Suppr超能文献

使用支持向量机进行 fMRI 数据的有效功能映射。

Effective functional mapping of fMRI data with support-vector machines.

机构信息

Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Gartenstr 29, 72074 Tübingen, Germany.

出版信息

Hum Brain Mapp. 2010 Oct;31(10):1502-11. doi: 10.1002/hbm.20955.

Abstract

There is a growing interest in using support vector machines (SVMs) to classify and analyze fMRI signals, leading to a wide variety of applications ranging from brain state decoding to functional mapping of spatially and temporally distributed brain activations. Studies so far have generated functional maps using the vector of weight values generated by the SVM classification process, or alternatively by mapping the correlation coefficient between the fMRI signal at each voxel and the brain state determined by the SVM. However, these approaches are limited as they do not incorporate both the information involved in the SVM prediction of a brain state, namely, the BOLD activation at voxels and the degree of involvement of different voxels as indicated by their weight values. An important implication of the above point is that two different datasets of BOLD signals, presumably obtained from two different experiments, can potentially produce two identical hyperplanes irrespective of their differences in data distribution. Yet, the two sets of signal inputs could correspond to different functional maps. With this consideration, we propose a new method called Effect Mapping that is generated as a product of the weight vector and a newly computed vector of mutual information between BOLD activations at each voxel and the SVM output. By applying this method on neuroimaging data of overt motor execution in nine healthy volunteers, we demonstrate higher decoding accuracy indicating the greater efficacy of this method.

摘要

目前,人们越来越感兴趣地使用支持向量机(SVM)对 fMRI 信号进行分类和分析,从而产生了从脑状态解码到空间和时间分布脑活动的功能映射等各种应用。到目前为止,研究已经使用 SVM 分类过程生成的权重值向量或通过映射每个体素的 fMRI 信号与 SVM 确定的脑状态之间的相关系数来生成功能图。然而,这些方法受到限制,因为它们没有结合 SVM 对脑状态的预测中涉及的信息,即体素中的 BOLD 激活以及不同体素的参与程度,这是由它们的权重值指示的。上述观点的一个重要含义是,两个不同的 BOLD 信号数据集,假设是从两个不同的实验中获得的,即使它们的数据分布不同,也可能产生两个相同的超平面。然而,两组信号输入可能对应于不同的功能图。有鉴于此,我们提出了一种称为效应映射的新方法,它是权重向量和每个体素的 BOLD 激活与 SVM 输出之间的互信息的新计算向量的乘积。通过在九名健康志愿者的显性运动执行的神经影像学数据上应用此方法,我们证明了更高的解码精度,表明了此方法的更高功效。

相似文献

1
Effective functional mapping of fMRI data with support-vector machines.
Hum Brain Mapp. 2010 Oct;31(10):1502-11. doi: 10.1002/hbm.20955.
3
fMRI volume classification using a 3D convolutional neural network robust to shifted and scaled neuronal activations.
Neuroimage. 2020 Dec;223:117328. doi: 10.1016/j.neuroimage.2020.117328. Epub 2020 Sep 5.
4
Spatially regularized machine learning for task and resting-state fMRI.
J Neurosci Methods. 2016 Jan 15;257:214-28. doi: 10.1016/j.jneumeth.2015.10.001. Epub 2015 Oct 16.
5
Dynamic changes in the mental rotation network revealed by pattern recognition analysis of fMRI data.
J Cogn Neurosci. 2009 May;21(5):890-904. doi: 10.1162/jocn.2009.21078.
6
Multiclass fMRI data decoding and visualization using supervised self-organizing maps.
Neuroimage. 2014 Aug 1;96:54-66. doi: 10.1016/j.neuroimage.2014.02.006. Epub 2014 Feb 12.
7
Decoding fMRI data with support vector machines and deep neural networks.
J Neurosci Methods. 2024 Jan 1;401:110004. doi: 10.1016/j.jneumeth.2023.110004. Epub 2023 Oct 31.
8
Classification of autistic individuals and controls using cross-task characterization of fMRI activity.
Neuroimage Clin. 2015 Nov 17;10:78-88. doi: 10.1016/j.nicl.2015.11.010. eCollection 2016.
9
Optimization of functional MRI for detection, decoding and high-resolution imaging of the response patterns of cortical columns.
Neuroimage. 2018 Jan 1;164:67-99. doi: 10.1016/j.neuroimage.2017.04.011. Epub 2017 Apr 28.
10
Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns.
Neuroimage. 2008 Oct 15;43(1):44-58. doi: 10.1016/j.neuroimage.2008.06.037. Epub 2008 Jul 11.

引用本文的文献

3
Motor Intentions Decoded from fMRI Signals.
Brain Sci. 2024 Jun 26;14(7):643. doi: 10.3390/brainsci14070643.
5
The Microstructure of Attentional Control in the Dorsal Attention Network.
J Cogn Neurosci. 2021 May 1;33(6):965-983. doi: 10.1162/jocn_a_01710.
7
Machine learning algorithm accurately detects fMRI signature of vulnerability to major depression.
Psychiatry Res. 2015 Aug 30;233(2):289-91. doi: 10.1016/j.pscychresns.2015.07.001. Epub 2015 Jul 5.
8
A topographical organization for action representation in the human brain.
Hum Brain Mapp. 2015 Oct;36(10):3832-44. doi: 10.1002/hbm.22881. Epub 2015 Jul 2.
9
MANIA-a pattern classification toolbox for neuroimaging data.
Neuroinformatics. 2014 Jul;12(3):471-86. doi: 10.1007/s12021-014-9223-8.
10
Support vector machine learning-based cerebral blood flow quantification for arterial spin labeling MRI.
Hum Brain Mapp. 2014 Jul;35(7):2869-75. doi: 10.1002/hbm.22445. Epub 2014 Jan 17.

本文引用的文献

1
Circular analysis in systems neuroscience: the dangers of double dipping.
Nat Neurosci. 2009 May;12(5):535-40. doi: 10.1038/nn.2303.
2
Unconscious determinants of free decisions in the human brain.
Nat Neurosci. 2008 May;11(5):543-5. doi: 10.1038/nn.2112. Epub 2008 Apr 13.
3
Interpreting fMRI data: maps, modules and dimensions.
Nat Rev Neurosci. 2008 Feb;9(2):123-35. doi: 10.1038/nrn2314.
4
Dynamic discrimination analysis: a spatial-temporal SVM.
Neuroimage. 2007 May 15;36(1):88-99. doi: 10.1016/j.neuroimage.2007.02.020. Epub 2007 Feb 23.
5
Reading hidden intentions in the human brain.
Curr Biol. 2007 Feb 20;17(4):323-8. doi: 10.1016/j.cub.2006.11.072. Epub 2007 Feb 8.
6
The impact of temporal compression and space selection on SVM analysis of single-subject and multi-subject fMRI data.
Neuroimage. 2006 Dec;33(4):1055-65. doi: 10.1016/j.neuroimage.2006.08.016. Epub 2006 Sep 28.
7
Beyond mind-reading: multi-voxel pattern analysis of fMRI data.
Trends Cogn Sci. 2006 Sep;10(9):424-30. doi: 10.1016/j.tics.2006.07.005. Epub 2006 Aug 8.
8
Decoding mental states from brain activity in humans.
Nat Rev Neurosci. 2006 Jul;7(7):523-34. doi: 10.1038/nrn1931.
9
Category-specific cortical activity precedes retrieval during memory search.
Science. 2005 Dec 23;310(5756):1963-6. doi: 10.1126/science.1117645.
10
Classifying brain states and determining the discriminating activation patterns: Support Vector Machine on functional MRI data.
Neuroimage. 2005 Dec;28(4):980-95. doi: 10.1016/j.neuroimage.2005.06.070. Epub 2005 Nov 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验