Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Gartenstr 29, 72074 Tübingen, Germany.
Hum Brain Mapp. 2010 Oct;31(10):1502-11. doi: 10.1002/hbm.20955.
There is a growing interest in using support vector machines (SVMs) to classify and analyze fMRI signals, leading to a wide variety of applications ranging from brain state decoding to functional mapping of spatially and temporally distributed brain activations. Studies so far have generated functional maps using the vector of weight values generated by the SVM classification process, or alternatively by mapping the correlation coefficient between the fMRI signal at each voxel and the brain state determined by the SVM. However, these approaches are limited as they do not incorporate both the information involved in the SVM prediction of a brain state, namely, the BOLD activation at voxels and the degree of involvement of different voxels as indicated by their weight values. An important implication of the above point is that two different datasets of BOLD signals, presumably obtained from two different experiments, can potentially produce two identical hyperplanes irrespective of their differences in data distribution. Yet, the two sets of signal inputs could correspond to different functional maps. With this consideration, we propose a new method called Effect Mapping that is generated as a product of the weight vector and a newly computed vector of mutual information between BOLD activations at each voxel and the SVM output. By applying this method on neuroimaging data of overt motor execution in nine healthy volunteers, we demonstrate higher decoding accuracy indicating the greater efficacy of this method.
目前,人们越来越感兴趣地使用支持向量机(SVM)对 fMRI 信号进行分类和分析,从而产生了从脑状态解码到空间和时间分布脑活动的功能映射等各种应用。到目前为止,研究已经使用 SVM 分类过程生成的权重值向量或通过映射每个体素的 fMRI 信号与 SVM 确定的脑状态之间的相关系数来生成功能图。然而,这些方法受到限制,因为它们没有结合 SVM 对脑状态的预测中涉及的信息,即体素中的 BOLD 激活以及不同体素的参与程度,这是由它们的权重值指示的。上述观点的一个重要含义是,两个不同的 BOLD 信号数据集,假设是从两个不同的实验中获得的,即使它们的数据分布不同,也可能产生两个相同的超平面。然而,两组信号输入可能对应于不同的功能图。有鉴于此,我们提出了一种称为效应映射的新方法,它是权重向量和每个体素的 BOLD 激活与 SVM 输出之间的互信息的新计算向量的乘积。通过在九名健康志愿者的显性运动执行的神经影像学数据上应用此方法,我们证明了更高的解码精度,表明了此方法的更高功效。