Suppr超能文献

大鼠体感皮层中感觉刺激和通道视紫红质-2刺激诱发的神经元活动与血氧水平依赖性功能磁共振成像反应之间的空间相关性研究。

Study of the spatial correlation between neuronal activity and BOLD fMRI responses evoked by sensory and channelrhodopsin-2 stimulation in the rat somatosensory cortex.

作者信息

Li Nan, van Zijl Peter, Thakor Nitish, Pelled Galit

机构信息

F. M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA.

出版信息

J Mol Neurosci. 2014 Aug;53(4):553-61. doi: 10.1007/s12031-013-0221-3. Epub 2014 Jan 19.

Abstract

In this work, we combined optogenetic tools with high-resolution blood oxygenation level-dependent functional MRI (BOLD fMRI), electrophysiology, and optical imaging of cerebral blood flow (CBF), to study the spatial correlation between the hemodynamic responses and neuronal activity. We first investigated the spatial and temporal characteristics of BOLD fMRI and the underlying neuronal responses evoked by sensory stimulations at different frequencies. The results demonstrated that under dexmedetomidine anesthesia, BOLD fMRI and neuronal activity in the rat primary somatosensory cortex (S1) have different frequency-dependency and distinct laminar activation profiles. We then found that localized activation of channelrhodopsin-2 (ChR2) expressed in neurons throughout the cortex induced neuronal responses that were confined to the light stimulation S1 region (<500 μm) with distinct laminar activation profile. However, the spatial extent of the hemodynamic responses measured by CBF and BOLD fMRI induced by both ChR2 and sensory stimulation was greater than 3 mm. These results suggest that due to the complex neurovascular coupling, it is challenging to determine specific characteristics of the underlying neuronal activity exclusively from the BOLD fMRI signals.

摘要

在这项工作中,我们将光遗传学工具与高分辨率血氧水平依赖性功能磁共振成像(BOLD fMRI)、电生理学以及脑血流(CBF)光学成像相结合,以研究血流动力学反应与神经元活动之间的空间相关性。我们首先研究了BOLD fMRI的时空特征以及不同频率感觉刺激所诱发的潜在神经元反应。结果表明,在右美托咪定麻醉下,大鼠初级体感皮层(S1)中的BOLD fMRI和神经元活动具有不同的频率依赖性和明显的层状激活模式。然后我们发现,在整个皮层神经元中表达的通道视紫红质-2(ChR2)的局部激活诱导了神经元反应,这些反应局限于光刺激的S1区域(<500μm),具有明显的层状激活模式。然而,由ChR2和感觉刺激所诱导的通过CBF和BOLD fMRI测量的血流动力学反应的空间范围大于3mm。这些结果表明,由于复杂的神经血管耦合,仅从BOLD fMRI信号确定潜在神经元活动的特定特征具有挑战性。

相似文献

2
Contribution of Excitatory and Inhibitory Neuronal Activity to BOLD fMRI.
Cereb Cortex. 2021 Jul 29;31(9):4053-4067. doi: 10.1093/cercor/bhab068.
3
Neural and hemodynamic responses to optogenetic and sensory stimulation in the rat somatosensory cortex.
J Cereb Blood Flow Metab. 2015 Jun;35(6):922-32. doi: 10.1038/jcbfm.2015.10. Epub 2015 Feb 11.
5
Layer-Specific fMRI Responses to Excitatory and Inhibitory Neuronal Activities in the Olfactory Bulb.
J Neurosci. 2015 Nov 18;35(46):15263-75. doi: 10.1523/JNEUROSCI.1015-15.2015.
6
Early fMRI responses to somatosensory and optogenetic stimulation reflect neural information flow.
Proc Natl Acad Sci U S A. 2021 Mar 16;118(11). doi: 10.1073/pnas.2023265118.
7
Functional MRI during hyperbaric oxygen: Effects of oxygen on neurovascular coupling and BOLD fMRI signals.
Neuroimage. 2015 Oct 1;119:382-9. doi: 10.1016/j.neuroimage.2015.06.082. Epub 2015 Jul 2.
8
Evidence that the negative BOLD response is neuronal in origin: a simultaneous EEG-BOLD-CBF study in humans.
Neuroimage. 2014 Jul 1;94:263-274. doi: 10.1016/j.neuroimage.2014.02.029. Epub 2014 Mar 12.
10
Coupling between simultaneously recorded BOLD response and neuronal activity in the rat somatosensory cortex.
Neuroimage. 2008 Jan 15;39(2):775-85. doi: 10.1016/j.neuroimage.2007.06.042. Epub 2007 Aug 8.

引用本文的文献

1
Magnetogenetic stimulation inside MRI induces spontaneous and evoked changes in neural circuits activity in rats.
Front Neurosci. 2024 Oct 1;18:1459120. doi: 10.3389/fnins.2024.1459120. eCollection 2024.
3
Cerebrospinal fluid solute transport associated with sensorimotor brain activity in rodents.
Sci Rep. 2023 Oct 9;13(1):17002. doi: 10.1038/s41598-023-43920-2.
5
Multi-session delivery of synchronous rTMS and sensory stimulation induces long-term plasticity.
Brain Stimul. 2021 Jul-Aug;14(4):884-894. doi: 10.1016/j.brs.2021.05.005. Epub 2021 May 21.
6
Non-invasive neuromodulation using rTMS and the electromagnetic-perceptive gene (EPG) facilitates plasticity after nerve injury.
Brain Stimul. 2020 Nov-Dec;13(6):1774-1783. doi: 10.1016/j.brs.2020.10.006. Epub 2020 Oct 15.
8
Temporal stability of fMRI in medetomidine-anesthetized rats.
Sci Rep. 2019 Nov 13;9(1):16673. doi: 10.1038/s41598-019-53144-y.
10
Optical imaging and modulation of neurovascular responses.
J Cereb Blood Flow Metab. 2018 Dec;38(12):2057-2072. doi: 10.1177/0271678X18803372. Epub 2018 Oct 18.

本文引用的文献

2
Optogenetic drive of neocortical pyramidal neurons generates fMRI signals that are correlated with spiking activity.
Brain Res. 2013 May 20;1511:33-45. doi: 10.1016/j.brainres.2013.03.011. Epub 2013 Mar 21.
3
Genetic tools to manipulate MRI contrast.
NMR Biomed. 2013 Jul;26(7):803-9. doi: 10.1002/nbm.2907. Epub 2013 Jan 28.
4
Biophysical and physiological origins of blood oxygenation level-dependent fMRI signals.
J Cereb Blood Flow Metab. 2012 Jul;32(7):1188-206. doi: 10.1038/jcbfm.2012.23. Epub 2012 Mar 7.
5
Neuronal inhibition and excitation, and the dichotomic control of brain hemodynamic and oxygen responses.
Neuroimage. 2012 Aug 15;62(2):1040-50. doi: 10.1016/j.neuroimage.2012.01.040. Epub 2012 Jan 12.
9
Optogenetic-guided cortical plasticity after nerve injury.
Proc Natl Acad Sci U S A. 2011 May 24;108(21):8838-43. doi: 10.1073/pnas.1100815108. Epub 2011 May 9.
10
The neurovascular unit in brain function and disease.
Acta Physiol (Oxf). 2011 Sep;203(1):47-59. doi: 10.1111/j.1748-1716.2011.02256.x. Epub 2011 Mar 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验