Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, piazza della Scienza 2, 20126, Milano, Italy.
Adv Healthc Mater. 2014 Jul;3(7):957-76. doi: 10.1002/adhm.201300602. Epub 2014 Jan 20.
Understanding the behavior of multifunctional colloidal nanoparticles capable of biomolecular targeting remains a fascinating challenge in materials science with dramatic implications in view of a possible clinical translation. In several circumstances, assumptions on structure-activity relationships have failed in determining the expected responses of these complex systems in a biological environment. The present Review depicts the most recent advances about colloidal nanoparticles designed for use as tools for cellular nanobiotechnology, in particular, for the preferential transport through different target compartments, including cell membrane, cytoplasm, mitochondria, and nucleus. Besides the conventional entry mechanisms based on crossing the cellular membrane, an insight into modern physical approaches to quantitatively deliver nanomaterials inside cells, such as microinjection and electro-poration, is provided. Recent hypotheses on how the nanoparticle structure and functionalization may affect the interactions at the nano-bio interface, which in turn mediate the nanoparticle internalization routes, are highlighted. In addition, some hurdles when this small interface faces the physiological environment and how this phenomenon can turn into different unexpected responses, are discussed. Finally, possible future developments oriented to synergistically tailor biological and chemical properties of nanoconjugates to improve the control over nanoparticle transport, which could open new scenarios in the field of nanomedicine, are addressed.
理解能够进行生物分子靶向的多功能胶体纳米粒子的行为仍然是材料科学中的一个迷人挑战,鉴于其可能的临床转化,这具有重大意义。在许多情况下,关于结构-活性关系的假设在确定这些复杂系统在生物环境中的预期反应时已经失效。本综述描述了最近关于胶体纳米粒子的进展,这些纳米粒子被设计用作细胞纳米生物技术的工具,特别是用于通过不同的靶区室(包括细胞膜、细胞质、线粒体和细胞核)进行优先运输。除了基于穿过细胞膜的传统进入机制外,还提供了对定量将纳米材料递送到细胞内的现代物理方法(如微注射和电穿孔)的深入了解。强调了关于纳米粒子结构和功能化如何影响纳米-生物界面相互作用的最新假设,而这些相互作用又介导了纳米粒子内化途径。此外,还讨论了当这个小界面面对生理环境时可能遇到的一些障碍,以及这种现象如何导致不同的意外反应。最后,讨论了可能的未来发展方向,旨在协同调整纳米缀合物的生物和化学性质,以提高对纳米粒子运输的控制,这可能为纳米医学领域开辟新的前景。