Laboratoire de Physiologie Moléculaire de la Cellule CP300, Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles (ULB), 11 Rue des Pr. Jeener et Brachet, 6041 Gosselies, Belgium.
Structure et Fonction des Membranes Biologiques, Centre de Biologie Structurale et de Bioinformatique, Université Libre de Bruxelles (ULB), Bld. du Triomphe, 1050 Brussels, Belgium.
J Biol Chem. 2014 Mar 7;289(10):7232-7246. doi: 10.1074/jbc.M113.525915. Epub 2014 Jan 21.
Amino acid uptake in yeast cells is mediated by about 16 plasma membrane permeases, most of which belong to the amino acid-polyamine-organocation (APC) transporter family. These proteins display various substrate specificity ranges. For instance, the general amino acid permease Gap1 transports all amino acids, whereas Can1 and Lyp1 catalyze specific uptake of arginine and lysine, respectively. Although Can1 and Lyp1 have different narrow substrate specificities, they are close homologs. Here we investigated the molecular rules determining the substrate specificity of the H(+)-driven arginine-specific permease Can1. Using a Can1-Lyp1 sequence alignment as a guideline and a three-dimensional Can1 structural model based on the crystal structure of the bacterial APC family arginine/agmatine antiporter, we introduced amino acid substitutions liable to alter Can1 substrate specificity. We show that the single substitution T456S results in a Can1 variant transporting lysine in addition to arginine and that the combined substitutions T456S and S176N convert Can1 to a Lyp1-like permease. Replacement of a highly conserved glutamate in the Can1 binding site leads to variants (E184Q and E184A) incapable of any amino acid transport, pointing to a potential role for this glutamate in H(+) coupling. Measurements of the kinetic parameters of arginine and lysine uptake by the wild-type and mutant Can1 permeases, together with docking calculations for each amino acid in their binding site, suggest a model in which residues at positions 176 and 456 confer substrate selectivity at the ligand-binding stage and/or in the course of conformational changes required for transport.
酵母细胞中的氨基酸摄取是由大约 16 种质膜透性酶介导的,其中大多数属于氨基酸-多胺-有机阳离子(APC)转运体家族。这些蛋白质显示出不同的底物特异性范围。例如,一般氨基酸透性酶 Gap1 转运所有氨基酸,而 Can1 和 Lyp1 分别催化精氨酸和赖氨酸的特异性摄取。尽管 Can1 和 Lyp1 具有不同的狭窄底物特异性,但它们是密切的同源物。在这里,我们研究了决定 H(+)驱动的精氨酸特异性透性酶 Can1 底物特异性的分子规则。我们使用 Can1-Lyp1 序列比对作为指导,并基于细菌 APC 家族精氨酸/胍氨酸反向转运体的晶体结构构建了 Can1 的三维结构模型,引入了可能改变 Can1 底物特异性的氨基酸取代。我们表明,单个取代 T456S 导致 Can1 变体除了转运精氨酸外还转运赖氨酸,而取代 T456S 和 S176N 的组合将 Can1 转化为类似 Lyp1 的透性酶。在 Can1 结合位点中替换一个高度保守的谷氨酸会导致变体(E184Q 和 E184A)无法进行任何氨基酸转运,这表明该谷氨酸在 H(+)偶联中可能发挥作用。野生型和突变型 Can1 透性酶对精氨酸和赖氨酸摄取的动力学参数的测量,以及对其结合位点中每种氨基酸的对接计算,提出了一个模型,其中位置 176 和 456 的残基在配体结合阶段和/或在运输所需的构象变化过程中赋予底物选择性。