Conway Anthony, Schaffer David V
Department of Chemical and Biomolecular Engineering, Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California, USA.
Stem Cells. 2014 May;32(5):1220-9. doi: 10.1002/stem.1650.
Neural stem cells (NSC) in two regions of the adult mammalian brain--the subventricular zone (SVZ) and hippocampus--continuously generate new neurons, enabled by a complex repertoire of factors that precisely regulate the activation, proliferation, differentiation, and integration of the newborn cells. A growing number of studies also report low-level neurogenesis in regions of the adult brain outside these established neurogenic niches--potentially via NSC recruitment or activation of local, quiescent NSCs--under perturbations such as ischemia, cell death, or viral gene delivery of proneural growth factors. We have explored whether implantation of engineered biomaterials can stimulate neurogenesis in normally quiescent regions of the brain. Specifically, recombinant versions of factors found within the NSC microenvironment, Sonic hedgehog, and ephrin-B2 were conjugated to long polymers, thereby creating highly bioactive, multivalent ligands that begin to emulate components of the neurogenic niche. In this engineered biomaterial microenvironment, new neuron formation was observed in normally non-neurogenic regions of the brain, the striatum, and the cortex, and combining these multivalent biomaterials with stromal cell-derived factor-1α increased neuronal commitment of newly divided cells seven- to eightfold in these regions. Additionally, the decreased hippocampal neurogenesis of geriatric rodents was partially rescued toward levels of young animals. We thus demonstrate for the first time de novo neurogenesis in both the cortex and striatum of adult rodents stimulated solely by delivery of synthetic biomaterial forms of proteins naturally found within adult neurogenic niches, offering the potential to replace neurons lost in neurodegenerative disease or injury as an alternative to cell implantation.
成年哺乳动物大脑的两个区域——脑室下区(SVZ)和海马体——中的神经干细胞(NSC)持续产生新的神经元,这一过程由一系列复杂的因子精确调控,这些因子精准调节新生细胞的激活、增殖、分化和整合。越来越多的研究还报告称,在这些已确定的神经发生微环境之外的成年大脑区域,也存在低水平的神经发生——可能是通过招募神经干细胞或激活局部静止的神经干细胞——在诸如缺血、细胞死亡或促神经生长因子的病毒基因递送等扰动情况下。我们探究了植入工程生物材料是否能刺激大脑正常静止区域的神经发生。具体而言,在神经干细胞微环境中发现的因子、音猬因子(Sonic hedgehog)和ephrin-B2的重组版本与长聚合物结合,从而创造出具有高生物活性的多价配体,开始模拟神经发生微环境的成分。在这种工程生物材料微环境中,在大脑正常非神经发生区域、纹状体和皮质中观察到了新神经元的形成,并且将这些多价生物材料与基质细胞衍生因子-1α相结合,可使这些区域新分裂细胞的神经元定向分化增加七至八倍。此外,老年啮齿动物海马体神经发生的减少部分恢复到了年轻动物的水平。因此,我们首次证明,仅通过递送成年神经发生微环境中天然存在的蛋白质的合成生物材料形式,就能刺激成年啮齿动物的皮质和纹状体中从头发生神经发生,这为替代细胞植入来替代神经退行性疾病或损伤中丢失的神经元提供了可能性。