Oncolytic Adenovirus Group, German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), 69120 Heidelberg, Germany.
Proc Natl Acad Sci U S A. 2014 Feb 4;111(5):E554-62. doi: 10.1073/pnas.1318563111. Epub 2014 Jan 21.
Aptazymes are small, ligand-dependent self-cleaving ribozymes that function independently of transcription factors and can be customized for induction by various small molecules. Here, we introduce these artificial riboswitches for regulation of DNA and RNA viruses. We hypothesize that they represent universally applicable tools for studying viral gene functions and for applications as a safety switch for oncolytic and live vaccine viruses. Our study shows that the insertion of artificial aptazymes into the adenoviral immediate early gene E1A enables small-molecule-triggered, dose-dependent inhibition of gene expression. Aptazyme-mediated shutdown of E1A expression translates into inhibition of adenoviral genome replication, infectious particle production, and cytotoxicity/oncolysis. These results provide proof of concept for the aptazyme approach for effective control of biological outcomes in eukaryotic systems, specifically in virus infections. Importantly, we also demonstrate aptazyme-dependent regulation of measles virus fusion protein expression, translating into potent reduction of progeny infectivity and virus spread. This not only establishes functionality of aptazymes in fully cytoplasmic genetic systems, but also implicates general feasibility of this strategy for application in viruses with either DNA or RNA genomes. Our study implies that gene regulation by artificial riboswitches may be an appealing alternative to Tet- and other protein-dependent gene regulation systems, based on their small size, RNA-intrinsic mode of action, and flexibility of the inducing molecule. Future applications range from gene analysis in basic research to medicine, for example as a safety switch for new generations of efficiency-enhanced oncolytic viruses.
适体酶是一种小分子、配体依赖性的自我切割核酶,它可以独立于转录因子发挥作用,并可以根据各种小分子进行定制诱导。在这里,我们将这些人工核酶开关引入到 DNA 和 RNA 病毒的调控中。我们假设,它们代表了用于研究病毒基因功能以及作为溶瘤和活疫苗病毒安全开关的通用工具。我们的研究表明,将人工适体酶插入腺病毒早期基因 E1A 中,可以实现小分子触发的、剂量依赖性的基因表达抑制。适体酶介导的 E1A 表达关闭会转化为抑制腺病毒基因组复制、感染性颗粒产生以及细胞毒性/溶瘤作用。这些结果为适体酶方法在真核系统中,特别是在病毒感染中有效控制生物学结果提供了概念验证。重要的是,我们还证明了适体酶可调节麻疹病毒融合蛋白的表达,从而显著降低病毒的感染力和传播。这不仅证明了适体酶在完全细胞质遗传系统中的功能,而且还暗示了这种策略在具有 DNA 或 RNA 基因组的病毒中的应用具有普遍可行性。我们的研究表明,基于其体积小、RNA 内在的作用模式和诱导分子的灵活性,人工核酶开关的基因调控可能是 Tet 等蛋白依赖性基因调控系统的一种有吸引力的替代方案。未来的应用范围从基础研究中的基因分析到医学,例如作为新一代增强型溶瘤病毒的安全开关。