Suppr超能文献

一种肌球蛋白-1 变体揭示了马达诱导的细胞中微管损伤。

A kinesin-1 variant reveals motor-induced microtubule damage in cells.

机构信息

Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.

Department of Biological Chemistry and Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA.

出版信息

Curr Biol. 2022 Jun 6;32(11):2416-2429.e6. doi: 10.1016/j.cub.2022.04.020. Epub 2022 May 2.

Abstract

Kinesins drive the transport of cellular cargoes as they walk along microtubule tracks; however, recent work has suggested that the physical act of kinesins walking along microtubules can stress the microtubule lattice. Here, we describe a kinesin-1 KIF5C mutant with an increased ability to generate damage sites in the microtubule lattice as compared with the wild-type motor. The expression of the mutant motor in cultured cells resulted in microtubule breakage and fragmentation, suggesting that kinesin-1 variants with increased damage activity would have been selected against during evolution. The increased ability to damage microtubules is not due to the enhanced motility properties of the mutant motor, as the expression of the kinesin-3 motor KIF1A, which has similar single-motor motility properties, also caused increased microtubule pausing, bending, and buckling but not breakage. In cells, motor-induced microtubule breakage could not be prevented by increased α-tubulin K40 acetylation, a post-translational modification known to increase microtubule flexibility. In vitro, lattice damage induced by wild-type KIF5C was repaired by soluble tubulin and resulted in increased rescues and overall microtubule growth, whereas lattice damage induced by the KIF5C mutant resulted in larger repair sites that made the microtubule vulnerable to breakage and fragmentation when under mechanical stress. These results demonstrate that kinesin-1 motility causes defects in and damage to the microtubule lattice in cells. While cells have the capacity to repair lattice damage, conditions that exceed this capacity result in microtubule breakage and fragmentation and may contribute to human disease.

摘要

驱动蛋白沿着微管轨道“行走”时可将细胞货物运输;然而,最近的研究表明,驱动蛋白沿着微管行走的物理行为可能会对微管晶格造成压力。在这里,我们描述了一种肌球蛋白-1 KIF5C 突变体,与野生型马达相比,它在微管晶格中产生损伤部位的能力增强。与野生型相比,该突变体在培养细胞中的表达导致微管断裂和碎片化,这表明在进化过程中,具有增加的损伤活性的驱动蛋白-1 变体将被淘汰。增加破坏微管的能力不是由于突变体马达的增强运动特性所致,因为具有相似的单马达运动特性的驱动蛋白-3 马达 KIF1A 的表达也导致微管停顿、弯曲和弯曲增加,但不会断裂。在细胞中,马达诱导的微管断裂不能通过增加α-微管蛋白 K40 乙酰化来预防,α-微管蛋白 K40 乙酰化是一种已知增加微管灵活性的翻译后修饰。在体外,野生型 KIF5C 诱导的晶格损伤可被可溶性微管修复,导致更多的恢复和整体微管生长,而 KIF5C 突变体诱导的晶格损伤导致更大的修复部位,使微管在受到机械应力时容易断裂和碎片化。这些结果表明,驱动蛋白-1 运动导致细胞中微管晶格出现缺陷和损伤。虽然细胞有能力修复晶格损伤,但超过此能力的条件会导致微管断裂和碎片化,并可能导致人类疾病。

相似文献

8
Microtubule damage shapes the acetylation gradient.微管损伤形成了乙酰化梯度。
Nat Commun. 2024 Mar 6;15(1):2029. doi: 10.1038/s41467-024-46379-5.

引用本文的文献

5
Structural switching of tubulin in the microtubule lattice.微管晶格中微管蛋白的结构转换。
Biochem Soc Trans. 2025 Feb 5;53(1):BST20240360. doi: 10.1042/BST20240360.
6
Mechanism and regulation of kinesin motors.驱动蛋白的作用机制与调控
Nat Rev Mol Cell Biol. 2025 Feb;26(2):86-103. doi: 10.1038/s41580-024-00780-6. Epub 2024 Oct 11.
10
Microtubule damage shapes the acetylation gradient.微管损伤形成了乙酰化梯度。
Nat Commun. 2024 Mar 6;15(1):2029. doi: 10.1038/s41467-024-46379-5.

本文引用的文献

2
Motor usage imprints microtubule stability along the shaft.运动使用沿着轴使微管稳定。
Dev Cell. 2022 Jan 10;57(1):5-18.e8. doi: 10.1016/j.devcel.2021.11.019. Epub 2021 Dec 8.
6
8
Microtubule self-repair.微管自修复。
Curr Opin Cell Biol. 2021 Feb;68:144-154. doi: 10.1016/j.ceb.2020.10.012. Epub 2020 Nov 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验