Suppr超能文献

p53 蛋白通过调节 Aha1 的表达来调节 Hsp90 ATP 酶的活性,从而调节 Wnt 信号通路。

p53 protein regulates Hsp90 ATPase activity and thereby Wnt signaling by modulating Aha1 expression.

机构信息

Department of Medicine, Weill Cornell Medical College, New York, New York 10065.

Department of Biomedical Sciences, Cornell University, Ithaca, New York 14853.

出版信息

J Biol Chem. 2014 Mar 7;289(10):6513-6525. doi: 10.1074/jbc.M113.532523. Epub 2014 Jan 22.

Abstract

The p53 tumor suppressor gene encodes a homotetrameric transcription factor which is activated in response to a variety of cellular stressors, including DNA damage and oncogene activation. p53 mutations occur in >50% of human cancers. Although p53 has been shown to regulate Wnt signaling, the underlying mechanisms are not well understood. Here we show that silencing p53 in colon cancer cells led to increased expression of Aha1, a co-chaperone of Hsp90. Heat shock factor-1 was important for mediating the changes in Aha1 levels. Increased Aha1 levels were associated with enhanced interactions with Hsp90, resulting in increased Hsp90 ATPase activity. Moreover, increased Hsp90 ATPase activity resulted in increased phosphorylation of Akt and glycogen synthase kinase-3β (GSK3β), leading to enhanced expression of Wnt target genes. Significantly, levels of Aha1, Hsp90 ATPase activity, Akt, and GSK3β phosphorylation and expression of Wnt target genes were increased in the colons of p53-null as compared with p53 wild type mice. Using p53 heterozygous mutant epithelial cells from Li-Fraumeni syndrome patients, we show that a monoallelic mutation of p53 was sufficient to activate the Aha1/Hsp90 ATPase axis leading to stimulation of Wnt signaling and increased expression of Wnt target genes. Pharmacologic intervention with CP-31398, a p53 rescue agent, inhibited recruitment of Aha1 to Hsp90 and suppressed Wnt-mediated gene expression in colon cancer cells. Taken together, this study provides new insights into the mechanism by which p53 regulates Wnt signaling and raises the intriguing possibility that p53 status may affect the efficacy of anticancer therapies targeting Hsp90 ATPase.

摘要

p53 肿瘤抑制基因编码一种同源四聚体转录因子,该因子在响应多种细胞应激物(包括 DNA 损伤和癌基因激活)时被激活。p53 突变发生在超过 50%的人类癌症中。尽管已经表明 p53 调节 Wnt 信号通路,但潜在的机制尚不清楚。在这里,我们显示在结肠癌细胞中沉默 p53 导致 Aha1 的表达增加,Aha1 是 Hsp90 的共伴侣。热休克因子-1对于介导 Aha1 水平的变化很重要。Aha1 水平的增加与与 Hsp90 的增强相互作用有关,导致 Hsp90 ATP 酶活性增加。此外,增加的 Hsp90 ATP 酶活性导致 Akt 和糖原合酶激酶-3β(GSK3β)的磷酸化增加,从而导致 Wnt 靶基因的表达增强。重要的是,与 p53 野生型小鼠相比,p53 缺失的结肠中 Aha1、Hsp90 ATP 酶活性、Akt 和 GSK3β 磷酸化以及 Wnt 靶基因的表达水平均增加。使用来自 Li-Fraumeni 综合征患者的 p53 杂合突变上皮细胞,我们表明 p53 的单等位基因突变足以激活 Aha1/Hsp90 ATP 酶轴,从而刺激 Wnt 信号通路并增加 Wnt 靶基因的表达。用 CP-31398(一种 p53 挽救剂)进行药物干预抑制了 Aha1 向 Hsp90 的募集,并抑制了结肠癌细胞中的 Wnt 介导的基因表达。总之,这项研究提供了新的见解,了解 p53 调节 Wnt 信号通路的机制,并提出了一个有趣的可能性,即 p53 状态可能影响针对 Hsp90 ATP 酶的抗癌治疗的疗效。

相似文献

1
p53 protein regulates Hsp90 ATPase activity and thereby Wnt signaling by modulating Aha1 expression.
J Biol Chem. 2014 Mar 7;289(10):6513-6525. doi: 10.1074/jbc.M113.532523. Epub 2014 Jan 22.
2
p53 modulates Hsp90 ATPase activity and regulates aryl hydrocarbon receptor signaling.
Cancer Prev Res (Phila). 2014 Jun;7(6):596-606. doi: 10.1158/1940-6207.CAPR-14-0051. Epub 2014 Apr 15.
3
Hsp90 and PKM2 Drive the Expression of Aromatase in Li-Fraumeni Syndrome Breast Adipose Stromal Cells.
J Biol Chem. 2016 Jul 29;291(31):16011-23. doi: 10.1074/jbc.M115.698902. Epub 2016 Jun 1.
5
A chemical compound inhibiting the Aha1-Hsp90 chaperone complex.
J Biol Chem. 2017 Oct 13;292(41):17073-17083. doi: 10.1074/jbc.M117.797829. Epub 2017 Aug 28.
7
Aha1 regulates Hsp90's conformation and function in a stoichiometry-dependent way.
Biophys J. 2023 Sep 5;122(17):3458-3468. doi: 10.1016/j.bpj.2023.07.020. Epub 2023 Jul 27.
8
Co-chaperone regulation of conformational switching in the Hsp90 ATPase cycle.
J Biol Chem. 2004 Dec 10;279(50):51989-98. doi: 10.1074/jbc.M410562200. Epub 2004 Oct 2.
9
p23 and Aha1: Distinct Functions Promote Client Maturation.
Subcell Biochem. 2023;101:159-187. doi: 10.1007/978-3-031-14740-1_6.

引用本文的文献

1
The Antifungal Activity of Loquat ( Lindl.) Leaves Extract Against .
Front Nutr. 2021 Aug 20;8:663584. doi: 10.3389/fnut.2021.663584. eCollection 2021.
2
The protective effect of PFTα on alcohol-induced osteonecrosis of the femoral head.
Oncotarget. 2017 Jul 11;8(59):100691-100707. doi: 10.18632/oncotarget.19160. eCollection 2017 Nov 21.
3
Regulation of the Tumor-Suppressor BECLIN 1 by Distinct Ubiquitination Cascades.
Int J Mol Sci. 2017 Nov 27;18(12):2541. doi: 10.3390/ijms18122541.
5
Hsp90 activator Aha1 drives production of pathological tau aggregates.
Proc Natl Acad Sci U S A. 2017 Sep 5;114(36):9707-9712. doi: 10.1073/pnas.1707039114. Epub 2017 Aug 21.
6
Hsp90 and PKM2 Drive the Expression of Aromatase in Li-Fraumeni Syndrome Breast Adipose Stromal Cells.
J Biol Chem. 2016 Jul 29;291(31):16011-23. doi: 10.1074/jbc.M115.698902. Epub 2016 Jun 1.
7
Loss of p53 expression is accompanied by upregulation of beta-catenin in meningiomas: a concomitant reciprocal expression.
Int J Exp Pathol. 2016 Apr;97(2):159-69. doi: 10.1111/iep.12186. Epub 2016 Jun 12.
8
Targeting cancer stem cells with p53 modulators.
Oncotarget. 2016 Jul 19;7(29):45079-45093. doi: 10.18632/oncotarget.8650.
9
Heat shock proteins: a therapeutic target worth to consider.
Vet World. 2015 Jan;8(1):46-51. doi: 10.14202/vetworld.2015.46-51. Epub 2015 Jan 13.
10
Heat shock proteins and hormesis in the diagnosis and treatment of neurodegenerative diseases.
Immun Ageing. 2015 Nov 4;12:20. doi: 10.1186/s12979-015-0046-8. eCollection 2015.

本文引用的文献

1
Activation and control of p53 tetramerization in individual living cells.
Proc Natl Acad Sci U S A. 2013 Sep 17;110(38):15497-501. doi: 10.1073/pnas.1311126110. Epub 2013 Sep 4.
2
Inhibition of HSP90 molecular chaperones: moving into the clinic.
Lancet Oncol. 2013 Aug;14(9):e358-69. doi: 10.1016/S1470-2045(13)70169-4.
3
Targeting HSF1 sensitizes cancer cells to HSP90 inhibition.
Oncotarget. 2013 Jun;4(6):816-29. doi: 10.18632/oncotarget.991.
4
p53 mutations in cancer.
Nat Cell Biol. 2013 Jan;15(1):2-8. doi: 10.1038/ncb2641.
6
Carnosol, a constituent of Zyflamend, inhibits aryl hydrocarbon receptor-mediated activation of CYP1A1 and CYP1B1 transcription and mutagenesis.
Cancer Prev Res (Phila). 2012 Apr;5(4):593-602. doi: 10.1158/1940-6207.CAPR-12-0002. Epub 2012 Feb 28.
7
p53 and microRNA-34 are suppressors of canonical Wnt signaling.
Sci Signal. 2011 Nov 1;4(197):ra71. doi: 10.1126/scisignal.2001744.
8
The Hsp90 chaperone machinery: conformational dynamics and regulation by co-chaperones.
Biochim Biophys Acta. 2012 Mar;1823(3):624-35. doi: 10.1016/j.bbamcr.2011.09.003. Epub 2011 Sep 16.
9
The role of p23, Hop, immunophilins, and other co-chaperones in regulating Hsp90 function.
Methods Mol Biol. 2011;787:45-66. doi: 10.1007/978-1-61779-295-3_4.
10
Pharmacological activation of p53 in cancer cells.
Curr Pharm Des. 2011;17(6):631-9. doi: 10.2174/138161211795222595.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验