Suppr超能文献

无参考细胞混合物调整在 DNA 甲基化数据分析中的应用。

Reference-free cell mixture adjustments in analysis of DNA methylation data.

机构信息

School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97331, USA and Section of Biostatistics and Epidemiology, Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.

出版信息

Bioinformatics. 2014 May 15;30(10):1431-9. doi: 10.1093/bioinformatics/btu029. Epub 2014 Jan 21.

Abstract

MOTIVATION

Recently there has been increasing interest in the effects of cell mixture on the measurement of DNA methylation, specifically the extent to which small perturbations in cell mixture proportions can register as changes in DNA methylation. A recently published set of statistical methods exploits this association to infer changes in cell mixture proportions, and these methods are presently being applied to adjust for cell mixture effect in the context of epigenome-wide association studies. However, these adjustments require the existence of reference datasets, which may be laborious or expensive to collect. For some tissues such as placenta, saliva, adipose or tumor tissue, the relevant underlying cell types may not be known.

RESULTS

We propose a method for conducting epigenome-wide association studies analysis when a reference dataset is unavailable, including a bootstrap method for estimating standard errors. We demonstrate via simulation study and several real data analyses that our proposed method can perform as well as or better than methods that make explicit use of reference datasets. In particular, it may adjust for detailed cell type differences that may be unavailable even in existing reference datasets.

AVAILABILITY AND IMPLEMENTATION

Software is available in the R package RefFreeEWAS. Data for three of four examples were obtained from Gene Expression Omnibus (GEO), accession numbers GSE37008, GSE42861 and GSE30601, while reference data were obtained from GEO accession number GSE39981.

CONTACT

andres.houseman@oregonstate.edu

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

最近,人们对细胞混合物对 DNA 甲基化测量的影响越来越感兴趣,特别是细胞混合物比例的微小扰动在多大程度上可以记录为 DNA 甲基化的变化。最近发表的一组统计方法利用这种关联来推断细胞混合物比例的变化,目前这些方法正被应用于调整表观基因组全关联研究中的细胞混合物效应。然而,这些调整需要存在参考数据集,而这些数据集可能难以收集或昂贵。对于某些组织,如胎盘、唾液、脂肪或肿瘤组织,相关的潜在细胞类型可能未知。

结果

我们提出了一种在没有参考数据集的情况下进行全基因组关联研究分析的方法,包括一种用于估计标准误差的自举方法。通过模拟研究和几个真实数据分析,我们证明了我们提出的方法可以与明确使用参考数据集的方法一样或更好地进行分析。特别是,它可以调整即使在现有的参考数据集中也可能无法获得的详细细胞类型差异。

可用性和实施

软件可在 R 包 RefFreeEWAS 中使用。四个示例中的三个数据来自基因表达综合数据库(GEO),注册号为 GSE37008、GSE42861 和 GSE30601,而参考数据则来自 GEO 注册号 GSE39981。

联系方式

andres.houseman@oregonstate.edu

补充信息

补充数据可在“生物信息学在线”上获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5612/4016702/766115a2ec3d/btu029f1p.jpg

相似文献

1
Reference-free cell mixture adjustments in analysis of DNA methylation data.
Bioinformatics. 2014 May 15;30(10):1431-9. doi: 10.1093/bioinformatics/btu029. Epub 2014 Jan 21.
2
Complete deconvolution of DNA methylation signals from complex tissues: a geometric approach.
Bioinformatics. 2021 May 23;37(8):1052-1059. doi: 10.1093/bioinformatics/btaa930.
3
A comprehensive evaluation of alignment software for reduced representation bisulfite sequencing data.
Bioinformatics. 2018 Aug 15;34(16):2715-2723. doi: 10.1093/bioinformatics/bty174.
4
Comparison of different cell type correction methods for genome-scale epigenetics studies.
BMC Bioinformatics. 2017 Apr 14;18(1):216. doi: 10.1186/s12859-017-1611-2.
5
AbsCN-seq: a statistical method to estimate tumor purity, ploidy and absolute copy numbers from next-generation sequencing data.
Bioinformatics. 2014 Apr 15;30(8):1056-1063. doi: 10.1093/bioinformatics/btt759. Epub 2014 Jan 2.
6
DMRfinder: efficiently identifying differentially methylated regions from MethylC-seq data.
BMC Bioinformatics. 2017 Nov 29;18(1):528. doi: 10.1186/s12859-017-1909-0.
7
Tumor purity quantification by clonal DNA methylation signatures.
Bioinformatics. 2018 May 15;34(10):1642-1649. doi: 10.1093/bioinformatics/bty011.
8
ViewBS: a powerful toolkit for visualization of high-throughput bisulfite sequencing data.
Bioinformatics. 2018 Feb 15;34(4):708-709. doi: 10.1093/bioinformatics/btx633.
9
DMAP: differential methylation analysis package for RRBS and WGBS data.
Bioinformatics. 2014 Jul 1;30(13):1814-22. doi: 10.1093/bioinformatics/btu126. Epub 2014 Mar 7.
10
AFS: identification and quantification of species composition by metagenomic sequencing.
Bioinformatics. 2017 May 1;33(9):1396-1398. doi: 10.1093/bioinformatics/btw822.

引用本文的文献

1
Accounting for differences between Infinium MethylationEPIC v2 and v1 in DNA methylation-based tools.
Life Sci Alliance. 2025 Jul 8;8(9). doi: 10.26508/lsa.202403155. Print 2025 Sep.
2
Maternal asthma and newborn DNA methylation.
Clin Epigenetics. 2025 May 10;17(1):79. doi: 10.1186/s13148-025-01858-4.
4
Examining cellular heterogeneity in human DNA methylation studies: Overview and recommendations.
STAR Protoc. 2025 Mar 21;6(1):103638. doi: 10.1016/j.xpro.2025.103638. Epub 2025 Feb 12.
5
Religion, spirituality, and DNA methylation in HPA-axis genes among Hispanic/Latino adults.
Epigenomics. 2025 Feb;17(3):155-166. doi: 10.1080/17501911.2024.2442293. Epub 2024 Dec 20.
7
Computational deconvolution of DNA methylation data from mixed DNA samples.
Brief Bioinform. 2024 Mar 27;25(3). doi: 10.1093/bib/bbae234.
8
Epigenetic Changes in Alzheimer's Disease: DNA Methylation and Histone Modification.
Cells. 2024 Apr 21;13(8):719. doi: 10.3390/cells13080719.
9
The astrocyte-produced growth factor HB-EGF limits autoimmune CNS pathology.
Nat Immunol. 2024 Mar;25(3):432-447. doi: 10.1038/s41590-024-01756-6. Epub 2024 Feb 26.
10
Low-input and single-cell methods for Infinium DNA methylation BeadChips.
Nucleic Acids Res. 2024 Apr 24;52(7):e38. doi: 10.1093/nar/gkae127.

本文引用的文献

1
Remarks on Parallel Analysis.
Multivariate Behav Res. 1992 Oct 1;27(4):509-40. doi: 10.1207/s15327906mbr2704_2.
2
Blood-based profiles of DNA methylation predict the underlying distribution of cell types: a validation analysis.
Epigenetics. 2013 Aug;8(8):816-26. doi: 10.4161/epi.25430. Epub 2013 Jun 25.
3
Epigenome-wide association data implicate DNA methylation as an intermediary of genetic risk in rheumatoid arthritis.
Nat Biotechnol. 2013 Feb;31(2):142-7. doi: 10.1038/nbt.2487. Epub 2013 Jan 20.
4
A genome-wide methylation study on essential hypertension in young African American males.
PLoS One. 2013;8(1):e53938. doi: 10.1371/journal.pone.0053938. Epub 2013 Jan 10.
5
Methylation subtypes and large-scale epigenetic alterations in gastric cancer.
Sci Transl Med. 2012 Oct 17;4(156):156ra140. doi: 10.1126/scitranslmed.3004504.
6
Heterogeneity in white blood cells has potential to confound DNA methylation measurements.
PLoS One. 2012;7(10):e46705. doi: 10.1371/journal.pone.0046705. Epub 2012 Oct 5.
7
Factors underlying variable DNA methylation in a human community cohort.
Proc Natl Acad Sci U S A. 2012 Oct 16;109 Suppl 2(Suppl 2):17253-60. doi: 10.1073/pnas.1121249109. Epub 2012 Oct 8.
8
Analysing and interpreting DNA methylation data.
Nat Rev Genet. 2012 Oct;13(10):705-19. doi: 10.1038/nrg3273.
10
Peripheral blood immune cell methylation profiles are associated with nonhematopoietic cancers.
Cancer Epidemiol Biomarkers Prev. 2012 Aug;21(8):1293-302. doi: 10.1158/1055-9965.EPI-12-0361. Epub 2012 Jun 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验