Suppr超能文献

通过晶体学数据约束的集成分子动力学模拟:精确的结构带来精确的动力学。

Ensemble MD simulations restrained via crystallographic data: accurate structure leads to accurate dynamics.

作者信息

Xue Yi, Skrynnikov Nikolai R

机构信息

Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana, 47907-2084, USA.

出版信息

Protein Sci. 2014 Apr;23(4):488-507. doi: 10.1002/pro.2433.

Abstract

Currently, the best existing molecular dynamics (MD) force fields cannot accurately reproduce the global free-energy minimum which realizes the experimental protein structure. As a result, long MD trajectories tend to drift away from the starting coordinates (e.g., crystallographic structures). To address this problem, we have devised a new simulation strategy aimed at protein crystals. An MD simulation of protein crystal is essentially an ensemble simulation involving multiple protein molecules in a crystal unit cell (or a block of unit cells). To ensure that average protein coordinates remain correct during the simulation, we introduced crystallography-based restraints into the MD protocol. Because these restraints are aimed at the ensemble-average structure, they have only minimal impact on conformational dynamics of the individual protein molecules. So long as the average structure remains reasonable, the proteins move in a native-like fashion as dictated by the original force field. To validate this approach, we have used the data from solid-state NMR spectroscopy, which is the orthogonal experimental technique uniquely sensitive to protein local dynamics. The new method has been tested on the well-established model protein, ubiquitin. The ensemble-restrained MD simulations produced lower crystallographic R factors than conventional simulations; they also led to more accurate predictions for crystallographic temperature factors, solid-state chemical shifts, and backbone order parameters. The predictions for (15) N R1 relaxation rates are at least as accurate as those obtained from conventional simulations. Taken together, these results suggest that the presented trajectories may be among the most realistic protein MD simulations ever reported. In this context, the ensemble restraints based on high-resolution crystallographic data can be viewed as protein-specific empirical corrections to the standard force fields.

摘要

目前,现有的最佳分子动力学(MD)力场无法准确再现实现实验性蛋白质结构的全局自由能最小值。因此,长时间的MD轨迹往往会偏离起始坐标(例如晶体结构)。为了解决这个问题,我们设计了一种针对蛋白质晶体的新模拟策略。蛋白质晶体的MD模拟本质上是一种系综模拟,涉及晶体晶胞(或一组晶胞)中的多个蛋白质分子。为确保模拟过程中蛋白质的平均坐标保持正确,我们在MD协议中引入了基于晶体学的约束。由于这些约束针对的是系综平均结构,它们对单个蛋白质分子的构象动力学影响极小。只要平均结构保持合理,蛋白质就会按照原始力场的要求以类似天然的方式移动。为验证这种方法,我们使用了来自固态核磁共振光谱的数据,这是一种对蛋白质局部动力学唯一敏感的正交实验技术。该新方法已在成熟的模型蛋白泛素上进行了测试。系综约束的MD模拟产生的晶体学R因子比传统模拟更低;它们还对晶体学温度因子、固态化学位移和主链序参数做出了更准确的预测。对(15)N R1弛豫率的预测至少与传统模拟获得的预测一样准确。综上所述,这些结果表明所呈现的轨迹可能是有史以来报道的最逼真的蛋白质MD模拟之一。在这种情况下,基于高分辨率晶体学数据的系综约束可被视为对标准力场的蛋白质特异性经验校正。

相似文献

7
Biomolecular Solvation Structure Revealed by Molecular Dynamics Simulations.
J Am Chem Soc. 2019 Mar 20;141(11):4711-4720. doi: 10.1021/jacs.8b13613. Epub 2019 Mar 11.
8
Solid-State NMR-Restrained Ensemble Dynamics of a Membrane Protein in Explicit Membranes.
Biophys J. 2015 Apr 21;108(8):1954-62. doi: 10.1016/j.bpj.2015.03.012.
9
Assessing the Current State of Amber Force Field Modifications for DNA.
J Chem Theory Comput. 2016 Aug 9;12(8):4114-27. doi: 10.1021/acs.jctc.6b00186. Epub 2016 Jul 7.
10
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.

引用本文的文献

1
Functional protein dynamics in a crystal.
Nat Commun. 2024 Apr 15;15(1):3244. doi: 10.1038/s41467-024-47473-4.
2
Functional Protein Dynamics in a Crystal.
bioRxiv. 2024 Mar 24:2023.07.06.548023. doi: 10.1101/2023.07.06.548023.
3
Modeling a unit cell: crystallographic refinement procedure using the biomolecular MD simulation platform .
IUCrJ. 2021 Dec 16;9(Pt 1):114-133. doi: 10.1107/S2052252521011891. eCollection 2022 Jan 1.
4
Unveiling the "invisible" druggable conformations of GDP-bound inactive Ras.
Proc Natl Acad Sci U S A. 2021 Mar 16;118(11). doi: 10.1073/pnas.2024725118.
5
On Restraints in End-Point Protein-Ligand Binding Free Energy Calculations.
J Comput Chem. 2020 Mar 5;41(6):573-586. doi: 10.1002/jcc.26119. Epub 2019 Dec 10.
6
Molecular Dynamics Simulations of Macromolecular Crystals.
Wiley Interdiscip Rev Comput Mol Sci. 2019 Jul-Aug;9(4). doi: 10.1002/wcms.1402. Epub 2018 Nov 16.
7
Biomolecular Solvation Structure Revealed by Molecular Dynamics Simulations.
J Am Chem Soc. 2019 Mar 20;141(11):4711-4720. doi: 10.1021/jacs.8b13613. Epub 2019 Mar 11.
8
Slow conformational exchange and overall rocking motion in ubiquitin protein crystals.
Nat Commun. 2017 Jul 27;8(1):145. doi: 10.1038/s41467-017-00165-8.
9
Identifying and Visualizing Macromolecular Flexibility in Structural Biology.
Front Mol Biosci. 2016 Sep 9;3:47. doi: 10.3389/fmolb.2016.00047. eCollection 2016.
10
Characterization of fibril dynamics on three timescales by solid-state NMR.
J Biomol NMR. 2016 Aug;65(3-4):171-191. doi: 10.1007/s10858-016-0047-8. Epub 2016 Jul 16.

本文引用的文献

1
Atomic-Resolution Structural Dynamics in Crystalline Proteins from NMR and Molecular Simulation.
J Phys Chem Lett. 2012 Dec 6;3(23):3657-62. doi: 10.1021/jz3016233. Epub 2012 Nov 27.
3
Atomic-level description of ubiquitin folding.
Proc Natl Acad Sci U S A. 2013 Apr 9;110(15):5915-20. doi: 10.1073/pnas.1218321110. Epub 2013 Mar 15.
4
Modelling dynamics in protein crystal structures by ensemble refinement.
Elife. 2012 Dec 18;1:e00311. doi: 10.7554/eLife.00311.
5
PPM: a side-chain and backbone chemical shift predictor for the assessment of protein conformational ensembles.
J Biomol NMR. 2012 Nov;54(3):257-65. doi: 10.1007/s10858-012-9668-8. Epub 2012 Sep 13.
6
Time- and ensemble-averaged direct NOE restraints.
J Biomol NMR. 1994 Jan;4(1):143-9. doi: 10.1007/BF00178343.
8
Refinement of protein structure homology models via long, all-atom molecular dynamics simulations.
Proteins. 2012 Aug;80(8):2071-9. doi: 10.1002/prot.24098. Epub 2012 May 15.
9
To B or not to B: a question of resolution?
Acta Crystallogr D Biol Crystallogr. 2012 Apr;68(Pt 4):468-77. doi: 10.1107/S0907444911028320. Epub 2012 Mar 16.
10
Interpreting protein structural dynamics from NMR chemical shifts.
J Am Chem Soc. 2012 Apr 11;134(14):6365-74. doi: 10.1021/ja300265w. Epub 2012 Mar 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验