Cerutti David S, Case David A
Department of Chemistry and Chemical Biology, Rutgers University, 174 Frelinghuysen Road, Piscataway, NJ 08854-8066.
Wiley Interdiscip Rev Comput Mol Sci. 2019 Jul-Aug;9(4). doi: 10.1002/wcms.1402. Epub 2018 Nov 16.
The structures of biological macromolecules would not be known to their present extent without X-ray crystallography. Most simulations of globular proteins in solution begin by surrounding the crystal structure of the monomer in a bath of water molecules, but the standard simulation employing periodic boundary conditions is already close to a crystal lattice environment. With simple protocols, the same software and molecular models can perform simulations of the crystal lattice, including all asymmetric units and solvent to fill the box. Throughout the history of molecular dynamics, studies of crystal lattices have served to investigate the quality of the underlying force fields, correlate the simulated ensembles to experimental structure factors, and extrapolate the behavior in lattices to behavior in solution. Powerful new computers are enabling molecular simulations with greater realism and statistical convergence. Meanwhile, the advent of exciting new methods in crystallography, including femtosecond free-electron lasers and image reconstruction for time-resolved crystallography on slurries of small crystals, is expanding the range of structures accessible to X-ray diffraction. We review past fusions of simulations and crystallography, then look ahead to the ways that simulations of crystal structures will enhance structural biology in the future.
如果没有X射线晶体学,生物大分子的结构就不会被了解到目前的程度。大多数球状蛋白质在溶液中的模拟都是从将单体的晶体结构置于水分子浴中开始的,但采用周期性边界条件的标准模拟已经接近晶格环境。通过简单的协议,相同的软件和分子模型可以对晶格进行模拟,包括所有不对称单元和填充盒子的溶剂。在分子动力学的整个历史中,对晶格的研究一直用于研究基础力场的质量、将模拟系综与实验结构因子相关联,以及将晶格中的行为外推到溶液中的行为。功能强大的新计算机使分子模拟具有更高的逼真度和统计收敛性。与此同时,晶体学中令人兴奋的新方法的出现,包括飞秒自由电子激光器和对小晶体浆料进行时间分辨晶体学的图像重建,正在扩大X射线衍射可获得的结构范围。我们回顾了过去模拟与晶体学的融合,然后展望晶体结构模拟在未来增强结构生物学的方式。