Suppr超能文献

大分子晶体的分子动力学模拟

Molecular Dynamics Simulations of Macromolecular Crystals.

作者信息

Cerutti David S, Case David A

机构信息

Department of Chemistry and Chemical Biology, Rutgers University, 174 Frelinghuysen Road, Piscataway, NJ 08854-8066.

出版信息

Wiley Interdiscip Rev Comput Mol Sci. 2019 Jul-Aug;9(4). doi: 10.1002/wcms.1402. Epub 2018 Nov 16.

Abstract

The structures of biological macromolecules would not be known to their present extent without X-ray crystallography. Most simulations of globular proteins in solution begin by surrounding the crystal structure of the monomer in a bath of water molecules, but the standard simulation employing periodic boundary conditions is already close to a crystal lattice environment. With simple protocols, the same software and molecular models can perform simulations of the crystal lattice, including all asymmetric units and solvent to fill the box. Throughout the history of molecular dynamics, studies of crystal lattices have served to investigate the quality of the underlying force fields, correlate the simulated ensembles to experimental structure factors, and extrapolate the behavior in lattices to behavior in solution. Powerful new computers are enabling molecular simulations with greater realism and statistical convergence. Meanwhile, the advent of exciting new methods in crystallography, including femtosecond free-electron lasers and image reconstruction for time-resolved crystallography on slurries of small crystals, is expanding the range of structures accessible to X-ray diffraction. We review past fusions of simulations and crystallography, then look ahead to the ways that simulations of crystal structures will enhance structural biology in the future.

摘要

如果没有X射线晶体学,生物大分子的结构就不会被了解到目前的程度。大多数球状蛋白质在溶液中的模拟都是从将单体的晶体结构置于水分子浴中开始的,但采用周期性边界条件的标准模拟已经接近晶格环境。通过简单的协议,相同的软件和分子模型可以对晶格进行模拟,包括所有不对称单元和填充盒子的溶剂。在分子动力学的整个历史中,对晶格的研究一直用于研究基础力场的质量、将模拟系综与实验结构因子相关联,以及将晶格中的行为外推到溶液中的行为。功能强大的新计算机使分子模拟具有更高的逼真度和统计收敛性。与此同时,晶体学中令人兴奋的新方法的出现,包括飞秒自由电子激光器和对小晶体浆料进行时间分辨晶体学的图像重建,正在扩大X射线衍射可获得的结构范围。我们回顾了过去模拟与晶体学的融合,然后展望晶体结构模拟在未来增强结构生物学的方式。

相似文献

1
Molecular Dynamics Simulations of Macromolecular Crystals.大分子晶体的分子动力学模拟
Wiley Interdiscip Rev Comput Mol Sci. 2019 Jul-Aug;9(4). doi: 10.1002/wcms.1402. Epub 2018 Nov 16.
3
Biomolecular Solvation Structure Revealed by Molecular Dynamics Simulations.分子动力学模拟揭示生物分子溶剂化结构。
J Am Chem Soc. 2019 Mar 20;141(11):4711-4720. doi: 10.1021/jacs.8b13613. Epub 2019 Mar 11.
4
gmXtal: Cooking Crystals with GROMACS.gmXtal:使用 GROMACS 烹饪晶体。
Protein J. 2024 Apr;43(2):200-206. doi: 10.1007/s10930-023-10141-5. Epub 2023 Aug 25.

引用本文的文献

2
Functional protein dynamics in a crystal.晶体中的功能蛋白动力学。
Nat Commun. 2024 Apr 15;15(1):3244. doi: 10.1038/s41467-024-47473-4.
4
Functional Protein Dynamics in a Crystal.晶体中的功能蛋白动力学
bioRxiv. 2024 Mar 24:2023.07.06.548023. doi: 10.1101/2023.07.06.548023.

本文引用的文献

6
Watching Proteins Function with Time-resolved X-ray Crystallography.利用时间分辨X射线晶体学观察蛋白质的功能
J Phys D Appl Phys. 2017 Sep 20;50(37). doi: 10.1088/1361-6463/aa7d32. Epub 2017 Aug 22.
8
Role of Terahertz (THz) Fluctuations in the Allosteric Properties of the PDZ Domains.THz 波动在 PDZ 结构域变构性质中的作用。
J Phys Chem B. 2017 Nov 9;121(44):10200-10208. doi: 10.1021/acs.jpcb.7b06590. Epub 2017 Oct 31.
10
X-ray Scattering Studies of Protein Structural Dynamics.蛋白质结构动力学的X射线散射研究。
Chem Rev. 2017 Jun 28;117(12):7615-7672. doi: 10.1021/acs.chemrev.6b00790. Epub 2017 May 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验