Bergonzo Christina, Henriksen Niel M, Roe Daniel R, Swails Jason M, Roitberg Adrian E, Cheatham Thomas E
Department of Medicinal Chemistry, College of Pharmacy, University of Utah , Salt Lake City, Utah 84112, United States.
Department of Chemistry, University of Florida , Gainesville, Florida 32611, United States.
J Chem Theory Comput. 2014 Jan 14;10(1):492-499. doi: 10.1021/ct400862k. Epub 2013 Nov 15.
A necessary step to properly assess and validate the performance of force fields for biomolecules is to exhaustively sample the accessible conformational space, which is challenging for large RNA structures. Given questions regarding the reliability of modeling RNA structure and dynamics with current methods, we have begun to use RNA tetranucleotides to evaluate force fields. These systems, though small, display considerable conformational variability and complete sampling with standard simulation methods remains challenging. Here we compare and discuss the performance of known variations of replica exchange molecular dynamics (REMD) methods, specifically temperature REMD (T-REMD), Hamiltonian REMD (H-REMD), and multidimensional REMD (M-REMD) methods, which have been implemented in Amber's accelerated GPU code. Using two independent simulations, we show that M-REMD not only makes very efficient use of emerging large-scale GPU clusters, like Blue Waters at the University of Illinois, but also is critically important in generating the converged ensemble more efficiently than either T-REMD or H-REMD. With 57.6 μs aggregate sampling of a conformational ensemble with M-REMD methods, the populations can be compared to NMR data to evaluate force field reliability and further understand how putative changes to the force field may alter populations to be in more consistent agreement with experiment.
正确评估和验证生物分子力场性能的一个必要步骤是详尽地采样可及的构象空间,这对于大型RNA结构来说具有挑战性。鉴于目前使用的方法在RNA结构和动力学建模可靠性方面存在问题,我们已开始使用RNA四核苷酸来评估力场。这些系统虽然小,但显示出相当大的构象变异性,使用标准模拟方法进行完全采样仍然具有挑战性。在这里,我们比较并讨论了复制交换分子动力学(REMD)方法的已知变体的性能,特别是温度REMD(T-REMD)、哈密顿REMD(H-REMD)和多维REMD(M-REMD)方法,这些方法已在Amber的加速GPU代码中实现。通过两个独立的模拟,我们表明M-REMD不仅能非常有效地利用新兴的大规模GPU集群,如伊利诺伊大学的Blue Waters,而且在比T-REMD或H-REMD更有效地生成收敛系综方面至关重要。使用M-REMD方法对一个构象系综进行了57.6微秒的总采样后,可以将群体与NMR数据进行比较,以评估力场的可靠性,并进一步了解力场的假定变化如何改变群体,使其与实验结果更一致。