Center of Mathematics, University of Minho, Campus de Azurem, 4800-058 Guimarães, Portugal.
Department of Statistics and O.R., University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
Comput Math Methods Med. 2013;2013:745742. doi: 10.1155/2013/745742. Epub 2013 Dec 12.
The Cox proportional hazards regression model has become the traditional choice for modeling survival data in medical studies. To introduce flexibility into the Cox model, several smoothing methods may be applied, and approaches based on splines are the most frequently considered in this context. To better understand the effects that each continuous covariate has on the outcome, results can be expressed in terms of splines-based hazard ratio (HR) curves, taking a specific covariate value as reference. Despite the potential advantages of using spline smoothing methods in survival analysis, there is currently no analytical method in the R software to choose the optimal degrees of freedom in multivariable Cox models (with two or more nonlinear covariate effects). This paper describes an R package, called smoothHR, that allows the computation of pointwise estimates of the HRs--and their corresponding confidence limits--of continuous predictors introduced nonlinearly. In addition the package provides functions for choosing automatically the degrees of freedom in multivariable Cox models. The package is available from the R homepage. We illustrate the use of the key functions of the smoothHR package using data from a study on breast cancer and data on acute coronary syndrome, from Galicia, Spain.
Cox 比例风险回归模型已成为医学研究中建模生存数据的传统选择。为了给 Cox 模型引入灵活性,可以应用几种平滑方法,而在此背景下,基于样条的方法是最常被考虑的方法。为了更好地理解每个连续协变量对结果的影响,可以根据基于样条的风险比 (HR) 曲线来表示结果,以特定的协变量值作为参考。尽管在生存分析中使用样条平滑方法具有潜在优势,但目前 R 软件中没有分析方法可以选择具有两个或更多非线性协变量效应的多变量 Cox 模型中的最佳自由度。本文描述了一个名为 smoothHR 的 R 包,它允许计算 HR 的点估计值--及其相应的置信限--引入非线性的连续预测因子。此外,该包还提供了用于自动选择多变量 Cox 模型中自由度的函数。该包可从 R 主页获得。我们使用乳腺癌研究的数据和来自西班牙加利西亚的急性冠状动脉综合征数据来说明 smoothHR 包的关键函数的使用。