Yamamoto Kazutoshi, Caporini Marc A, Im Sang-Choul, Waskell Lucy, Ramamoorthy Ayyalusamy
Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA.
Bruker BioSpin Corporation, 15 Fortune Drive, Billerica, MA 01821, USA.
Biochim Biophys Acta. 2015 Jan;1848(1 Pt B):342-9. doi: 10.1016/j.bbamem.2014.07.008. Epub 2014 Jul 11.
While an increasing number of structural biology studies successfully demonstrate the power of high-resolution structures and dynamics of membrane proteins in fully understanding their function, there is considerable interest in developing NMR approaches to obtain such information in a cellular setting. As long as the proteins inside the living cell tumble rapidly in the NMR timescale, recently developed in-cell solution NMR approaches can provide 3D structural information. However, there are numerous challenges to study membrane proteins inside a cell. Research in our laboratory is focused on developing a combination of solid-state NMR and biological approaches to overcome these challenges in order to obtain high-resolution structural insights into electron transfer processes mediated by membrane-bound proteins like mammalian cytochrome-b5, cytochrome-P450 and cytochrome-P450-reductase. In this study, we demonstrate the feasibility of using dynamic nuclear polarization (DNP) magic angle spinning (MAS) NMR spectroscopy for in-cell studies on a membrane-anchored protein. Our experimental results obtained from ¹³C-labeled membrane-anchored cytochrome-b5 in native Escherichia coli cells show a ~16-fold DNP signal enhancement. Further, results obtained from a 2D ¹³C/¹³C chemical shift correlation MAS experiment demonstrate the feasibility of suppressing the background signals from other cellular contents for high-resolution structural studies on membrane proteins. We believe that this study would pave new avenues for high-resolution structural studies on a variety of membrane-associated proteins and their complexes in the cellular context to fully understand their functional roles in physiological processes.
虽然越来越多的结构生物学研究成功证明了膜蛋白的高分辨率结构和动力学在全面理解其功能方面的强大作用,但人们对开发核磁共振(NMR)方法以在细胞环境中获取此类信息仍有浓厚兴趣。只要活细胞内的蛋白质在NMR时间尺度上快速翻滚,最近开发的细胞内溶液NMR方法就能提供三维结构信息。然而,在细胞内研究膜蛋白存在诸多挑战。我们实验室的研究重点是开发固态NMR与生物学方法的组合,以克服这些挑战,从而获得对由诸如哺乳动物细胞色素b5、细胞色素P450和细胞色素P450还原酶等膜结合蛋白介导的电子转移过程的高分辨率结构见解。在本研究中,我们证明了使用动态核极化(DNP)魔角旋转(MAS)NMR光谱对膜锚定蛋白进行细胞内研究的可行性。我们从天然大肠杆菌细胞中¹³C标记的膜锚定细胞色素b5获得的实验结果显示DNP信号增强了约16倍。此外,从二维¹³C/¹³C化学位移相关MAS实验获得的结果证明了抑制来自其他细胞成分的背景信号以对膜蛋白进行高分辨率结构研究的可行性。我们相信这项研究将为在细胞环境中对各种膜相关蛋白及其复合物进行高分辨率结构研究开辟新途径,以充分了解它们在生理过程中的功能作用。