Wang Yajuan, Loghmanpour Natasha, Vandenberghe Stijn, Ferreira Antonio, Keller Bradley, Gorcsan John, Antaki James
Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America.
University of Bern, Bern, Switzerland.
PLoS One. 2014 Jan 17;9(1):e85234. doi: 10.1371/journal.pone.0085234. eCollection 2014.
Lumped parameter models have been employed for decades to simulate important hemodynamic couplings between a left ventricular assist device (LVAD) and the native circulation. However, these studies seldom consider the pathological descending limb of the Frank-Starling response of the overloaded ventricle. This study introduces a dilated heart failure model featuring a unimodal end systolic pressure-volume relationship (ESPVR) to address this critical shortcoming. The resulting hemodynamic response to mechanical circulatory support are illustrated through numerical simulations of a rotodynamic, continuous flow ventricular assist device (cfVAD) coupled to systemic and pulmonary circulations with baroreflex control. The model further incorporated septal interaction to capture the influence of left ventricular (LV) unloading on right ventricular function. Four heart failure conditions were simulated (LV and bi-ventricular failure with/without pulmonary hypertension) in addition to normal baseline. Several metrics of LV function, including cardiac output and stroke work, exhibited a unimodal response whereby initial unloading improved function, and further unloading depleted preload reserve thereby reducing ventricular output. The concept of extremal loading was introduced to reflect the loading condition in which the intrinsic LV stroke work is maximized. Simulation of bi-ventricular failure with pulmonary hypertension revealed inadequacy of LV support alone. These simulations motivate the implementation of an extremum tracking feedback controller to potentially optimize ventricular recovery.
集总参数模型已被应用数十年,用于模拟左心室辅助装置(LVAD)与自然循环之间重要的血流动力学耦合。然而,这些研究很少考虑过载心室Frank-Starling反应的病理性下降支。本研究引入了一种具有单峰收缩末期压力-容积关系(ESPVR)的扩张型心力衰竭模型,以解决这一关键缺陷。通过对与体循环和肺循环耦合并具有压力反射控制的旋转动力、连续流心室辅助装置(cfVAD)进行数值模拟,展示了对机械循环支持的血流动力学反应。该模型进一步纳入了室间隔相互作用,以捕捉左心室(LV)卸载对右心室功能的影响。除了正常基线外,还模拟了四种心力衰竭情况(伴有/不伴有肺动脉高压的左心室和双心室衰竭)。包括心输出量和每搏功在内的几种左心室功能指标表现出单峰反应,即初始卸载可改善功能,而进一步卸载会耗尽前负荷储备,从而降低心室输出。引入了极值负荷的概念,以反映左心室固有每搏功最大化的负荷状态。伴有肺动脉高压的双心室衰竭模拟显示,仅左心室支持是不够的。这些模拟促使实施极值跟踪反馈控制器,以潜在地优化心室恢复。