Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile ; Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile.
Institute for Research on Cancer and Aging of Nice (IRCAN), Université de Nice Sophia Antipolis, Nice, France.
PLoS One. 2014 Jan 21;9(1):e86533. doi: 10.1371/journal.pone.0086533. eCollection 2014.
Different populations within a species represent a rich reservoir of allelic variants, corresponding to an evolutionary signature of withstood environmental constraints. Saccharomyces cerevisiae strains are widely utilised in the fermentation of different kinds of alcoholic beverages, such as, wine and sake, each of them derived from must with distinct nutrient composition. Importantly, adequate nitrogen levels in the medium are essential for the fermentation process, however, a comprehensive understanding of the genetic variants determining variation in nitrogen consumption is lacking. Here, we assessed the genetic factors underlying variation in nitrogen consumption in a segregating population derived from a cross between two main fermenter yeasts, a Wine/European and a Sake isolate. By linkage analysis we identified 18 main effect QTLs for ammonium and amino acids sources. Interestingly, majority of QTLs were involved in more than a single trait, grouped based on amino acid structure and indicating high levels of pleiotropy across nitrogen sources, in agreement with the observed patterns of phenotypic co-variation. Accordingly, we performed reciprocal hemizygosity analysis validating an effect for three genes, GLT1, ASI1 and AGP1. Furthermore, we detected a widespread pleiotropic effect on these genes, with AGP1 affecting seven amino acids and nine in the case of GLT1 and ASI1. Based on sequence and comparative analysis, candidate causative mutations within these genes were also predicted. Altogether, the identification of these variants demonstrate how Sake and Wine/European genetic backgrounds differentially consume nitrogen sources, in part explaining independently evolved preferences for nitrogen assimilation and representing a niche of genetic diversity for the implementation of practical approaches towards more efficient strains for nitrogen metabolism.
不同物种群体代表了丰富的等位基因变异库,对应于耐受环境限制的进化特征。酿酒酵母菌株广泛用于不同类型酒精饮料的发酵,例如葡萄酒和清酒,它们分别来自具有不同营养成分的葡萄汁。重要的是,培养基中适当的氮水平对发酵过程至关重要,然而,对于决定氮消耗变化的遗传变异的综合理解还缺乏。在这里,我们评估了来自两种主要发酵酵母(葡萄酒/欧洲和清酒分离株)杂交产生的分离群体中氮消耗变化的遗传因素。通过连锁分析,我们确定了 18 个主要的铵和氨基酸来源的效应 QTL。有趣的是,大多数 QTL 涉及不止一个性状,根据氨基酸结构分组,表明对氮源具有高水平的多效性,与观察到的表型协变模式一致。因此,我们进行了反向半合子分析,验证了 GLT1、ASI1 和 AGP1 三个基因的效应。此外,我们检测到这些基因的广泛多效性效应,其中 AGP1 影响七种氨基酸,而 GLT1 和 ASI1 则影响九种氨基酸。基于序列和比较分析,还预测了这些基因内的候选致病突变。总之,这些变异的鉴定表明了清酒和葡萄酒/欧洲遗传背景如何不同地消耗氮源,部分解释了独立进化的氮同化偏好,并代表了实现更有效的氮代谢菌株的实用方法的遗传多样性的小生境。