Suppr超能文献

绘制发酵酵母中中枢氮代谢差异的遗传变异图谱。

Mapping genetic variants underlying differences in the central nitrogen metabolism in fermenter yeasts.

机构信息

Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile ; Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile.

Institute for Research on Cancer and Aging of Nice (IRCAN), Université de Nice Sophia Antipolis, Nice, France.

出版信息

PLoS One. 2014 Jan 21;9(1):e86533. doi: 10.1371/journal.pone.0086533. eCollection 2014.

Abstract

Different populations within a species represent a rich reservoir of allelic variants, corresponding to an evolutionary signature of withstood environmental constraints. Saccharomyces cerevisiae strains are widely utilised in the fermentation of different kinds of alcoholic beverages, such as, wine and sake, each of them derived from must with distinct nutrient composition. Importantly, adequate nitrogen levels in the medium are essential for the fermentation process, however, a comprehensive understanding of the genetic variants determining variation in nitrogen consumption is lacking. Here, we assessed the genetic factors underlying variation in nitrogen consumption in a segregating population derived from a cross between two main fermenter yeasts, a Wine/European and a Sake isolate. By linkage analysis we identified 18 main effect QTLs for ammonium and amino acids sources. Interestingly, majority of QTLs were involved in more than a single trait, grouped based on amino acid structure and indicating high levels of pleiotropy across nitrogen sources, in agreement with the observed patterns of phenotypic co-variation. Accordingly, we performed reciprocal hemizygosity analysis validating an effect for three genes, GLT1, ASI1 and AGP1. Furthermore, we detected a widespread pleiotropic effect on these genes, with AGP1 affecting seven amino acids and nine in the case of GLT1 and ASI1. Based on sequence and comparative analysis, candidate causative mutations within these genes were also predicted. Altogether, the identification of these variants demonstrate how Sake and Wine/European genetic backgrounds differentially consume nitrogen sources, in part explaining independently evolved preferences for nitrogen assimilation and representing a niche of genetic diversity for the implementation of practical approaches towards more efficient strains for nitrogen metabolism.

摘要

不同物种群体代表了丰富的等位基因变异库,对应于耐受环境限制的进化特征。酿酒酵母菌株广泛用于不同类型酒精饮料的发酵,例如葡萄酒和清酒,它们分别来自具有不同营养成分的葡萄汁。重要的是,培养基中适当的氮水平对发酵过程至关重要,然而,对于决定氮消耗变化的遗传变异的综合理解还缺乏。在这里,我们评估了来自两种主要发酵酵母(葡萄酒/欧洲和清酒分离株)杂交产生的分离群体中氮消耗变化的遗传因素。通过连锁分析,我们确定了 18 个主要的铵和氨基酸来源的效应 QTL。有趣的是,大多数 QTL 涉及不止一个性状,根据氨基酸结构分组,表明对氮源具有高水平的多效性,与观察到的表型协变模式一致。因此,我们进行了反向半合子分析,验证了 GLT1、ASI1 和 AGP1 三个基因的效应。此外,我们检测到这些基因的广泛多效性效应,其中 AGP1 影响七种氨基酸,而 GLT1 和 ASI1 则影响九种氨基酸。基于序列和比较分析,还预测了这些基因内的候选致病突变。总之,这些变异的鉴定表明了清酒和葡萄酒/欧洲遗传背景如何不同地消耗氮源,部分解释了独立进化的氮同化偏好,并代表了实现更有效的氮代谢菌株的实用方法的遗传多样性的小生境。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11d3/3897725/3abbaa623e6f/pone.0086533.g001.jpg

相似文献

1
Mapping genetic variants underlying differences in the central nitrogen metabolism in fermenter yeasts.
PLoS One. 2014 Jan 21;9(1):e86533. doi: 10.1371/journal.pone.0086533. eCollection 2014.
2
Genetic variants of TORC1 signaling pathway affect nitrogen consumption in Saccharomyces cerevisiae during alcoholic fermentation.
PLoS One. 2019 Jul 26;14(7):e0220515. doi: 10.1371/journal.pone.0220515. eCollection 2019.
3
The genetic basis of natural variation in oenological traits in Saccharomyces cerevisiae.
PLoS One. 2012;7(11):e49640. doi: 10.1371/journal.pone.0049640. Epub 2012 Nov 21.
6
9
Nitrogen sources preferences of non-Saccharomyces yeasts to sustain growth and fermentation under winemaking conditions.
Food Microbiol. 2020 Feb;85:103287. doi: 10.1016/j.fm.2019.103287. Epub 2019 Aug 9.
10
A comparison of the nitrogen metabolic networks of Kluyveromyces marxianus and Saccharomyces cerevisiae.
Environ Microbiol. 2019 Nov;21(11):4076-4091. doi: 10.1111/1462-2920.14756. Epub 2019 Aug 6.

引用本文的文献

1
Quantitative genetic analysis of attractiveness of yeast products to Drosophila.
Genetics. 2024 Jun 5;227(2). doi: 10.1093/genetics/iyae048.
4
A Saccharomyces eubayanus haploid resource for research studies.
Sci Rep. 2022 Apr 8;12(1):5976. doi: 10.1038/s41598-022-10048-8.
5
Uncovering Divergence in Gene Expression Regulation in the Adaptation of Yeast to Nitrogen Scarcity.
mSystems. 2021 Aug 31;6(4):e0046621. doi: 10.1128/mSystems.00466-21. Epub 2021 Aug 24.
6
QTL mapping: an innovative method for investigating the genetic determinism of yeast-bacteria interactions in wine.
Appl Microbiol Biotechnol. 2021 Jun;105(12):5053-5066. doi: 10.1007/s00253-021-11376-x. Epub 2021 Jun 9.
8
History and Domestication of in Bread Baking.
Front Genet. 2020 Nov 11;11:584718. doi: 10.3389/fgene.2020.584718. eCollection 2020.

本文引用的文献

1
A high-definition view of functional genetic variation from natural yeast genomes.
Mol Biol Evol. 2014 Apr;31(4):872-88. doi: 10.1093/molbev/msu037. Epub 2014 Jan 14.
2
Genetic basis of variations in nitrogen source utilization in four wine commercial yeast strains.
PLoS One. 2013 Jun 24;8(6):e67166. doi: 10.1371/journal.pone.0067166. Print 2013.
4
Integrative phenomics reveals insight into the structure of phenotypic diversity in budding yeast.
Genome Res. 2013 Sep;23(9):1496-504. doi: 10.1101/gr.155762.113. Epub 2013 May 29.
5
WEB-based GEne SeT AnaLysis Toolkit (WebGestalt): update 2013.
Nucleic Acids Res. 2013 Jul;41(Web Server issue):W77-83. doi: 10.1093/nar/gkt439. Epub 2013 May 23.
6
Quantitative trait analysis of yeast biodiversity yields novel gene tools for metabolic engineering.
Metab Eng. 2013 May;17:68-81. doi: 10.1016/j.ymben.2013.02.006. Epub 2013 Mar 18.
7
Yeast proteome variations reveal different adaptive responses to grape must fermentation.
Mol Biol Evol. 2013 Jun;30(6):1368-83. doi: 10.1093/molbev/mst050. Epub 2013 Mar 14.
8
The genetic basis of natural variation in oenological traits in Saccharomyces cerevisiae.
PLoS One. 2012;7(11):e49640. doi: 10.1371/journal.pone.0049640. Epub 2012 Nov 21.
9
QTL mapping of the production of wine aroma compounds by yeast.
BMC Genomics. 2012 Oct 30;13:573. doi: 10.1186/1471-2164-13-573.
10
The genomic landscape and evolutionary resolution of antagonistic pleiotropy in yeast.
Cell Rep. 2012 Nov 29;2(5):1399-410. doi: 10.1016/j.celrep.2012.09.017. Epub 2012 Oct 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验