Suppr超能文献

与葡萄酒发酵和适应氮限制相关的单核苷酸多态性在野生和驯化酵母菌株中。

Single nucleotide polymorphisms associated with wine fermentation and adaptation to nitrogen limitation in wild and domesticated yeast strains.

机构信息

Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile.

Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile.

出版信息

Biol Res. 2023 Jul 29;56(1):43. doi: 10.1186/s40659-023-00453-2.

Abstract

For more than 20 years, Saccharomyces cerevisiae has served as a model organism for genetic studies and molecular biology, as well as a platform for biotechnology (e.g., wine production). One of the important ecological niches of this yeast that has been extensively studied is wine fermentation, a complex microbiological process in which S. cerevisiae faces various stresses such as limited availability of nitrogen. Nitrogen deficiencies in grape juice impair fermentation rate and yeast biomass production, leading to sluggish or stuck fermentations, resulting in considerable economic losses for the wine industry. In the present work, we took advantage of the "1002 Yeast Genomes Project" population, the most complete catalogue of the genetic variation in the species and a powerful resource for genotype-phenotype correlations, to study the adaptation to nitrogen limitation in wild and domesticated yeast strains in the context of wine fermentation. We found that wild and domesticated yeast strains have different adaptations to nitrogen limitation, corroborating their different evolutionary trajectories. Using a combination of state-of-the-art bioinformatic (GWAS) and molecular biology (CRISPR-Cas9) methodologies, we validated that PNP1, RRT5 and PDR12 are implicated in wine fermentation, where RRT5 and PDR12 are also involved in yeast adaptation to nitrogen limitation. In addition, we validated SNPs in these genes leading to differences in fermentative capacities and adaptation to nitrogen limitation. Altogether, the mapped genetic variants have potential applications for the genetic improvement of industrial yeast strains.

摘要

二十多年来,酿酒酵母一直是遗传研究和分子生物学的模式生物,也是生物技术(如葡萄酒生产)的平台。这种酵母广泛研究的一个重要生态位是葡萄酒发酵,这是一个复杂的微生物过程,酿酒酵母在这个过程中面临着各种压力,如氮的有限可用性。葡萄汁中的氮缺乏会降低发酵速度和酵母生物量的产生,导致发酵缓慢或停滞,给葡萄酒行业造成巨大的经济损失。在本工作中,我们利用“1002 酵母基因组计划”群体,该群体是该物种遗传变异的最完整目录,也是基因型-表型相关性的强大资源,研究了在葡萄酒发酵背景下野生和驯化酵母菌株对氮限制的适应。我们发现野生和驯化酵母菌株对氮限制有不同的适应,证实了它们不同的进化轨迹。我们使用最先进的生物信息学(GWAS)和分子生物学(CRISPR-Cas9)方法相结合,验证了 PNP1、RRT5 和 PDR12 与葡萄酒发酵有关,其中 RRT5 和 PDR12 也参与了酵母对氮限制的适应。此外,我们验证了这些基因中的 SNP 导致发酵能力和氮限制适应的差异。总之,映射的遗传变异有可能应用于工业酵母菌株的遗传改良。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d2a/10385942/7b6495a23a4a/40659_2023_453_Fig1_HTML.jpg

相似文献

5
Growth of non-Saccharomyces yeasts affects nutrient availability for Saccharomyces cerevisiae during wine fermentation.
Int J Food Microbiol. 2012 Jul 2;157(2):245-50. doi: 10.1016/j.ijfoodmicro.2012.05.012. Epub 2012 May 16.
6
Phenotypic and genomic differences among S. cerevisiae strains in nitrogen requirements during wine fermentations.
Food Microbiol. 2021 Jun;96:103685. doi: 10.1016/j.fm.2020.103685. Epub 2020 Dec 27.
7
Comparative analysis of fermentation and enzyme expression profiles among industrial Saccharomyces cerevisiae strains.
Appl Microbiol Biotechnol. 2018 Aug;102(16):7071-7081. doi: 10.1007/s00253-018-9128-9. Epub 2018 Jun 7.
9
Influence of ergosterol and phytosterols on wine alcoholic fermentation with strains.
Front Microbiol. 2022 Sep 8;13:966245. doi: 10.3389/fmicb.2022.966245. eCollection 2022.
10
Identification of genes related to nitrogen uptake in wine strains of Saccharomyces cerevisiae.
World J Microbiol Biotechnol. 2012 Mar;28(3):1107-13. doi: 10.1007/s11274-011-0911-3. Epub 2011 Oct 9.

引用本文的文献

1
High-Throughput Indirect Monitoring of TORC1 Activation Using the pTOMAN-G Plasmid in Yeast.
Bio Protoc. 2025 Jun 20;15(12):e5356. doi: 10.21769/BioProtoc.5356.
2
Wine Fermentation as a Model System for Microbial Ecology and Evolution.
Environ Microbiol. 2025 Apr;27(4):e70092. doi: 10.1111/1462-2920.70092.
4
Optogenetic Modification of Glycerol Production in Wine Yeast.
ACS Synth Biol. 2025 Mar 21;14(3):719-728. doi: 10.1021/acssynbio.4c00654. Epub 2025 Feb 14.
5
Optogenetic control of horizontally acquired genes prevent stuck fermentations in yeast.
Microbiol Spectr. 2025 Feb 4;13(2):e0179424. doi: 10.1128/spectrum.01794-24. Epub 2025 Jan 8.

本文引用的文献

2
Tips, Tricks, and Potential Pitfalls of CRISPR Genome Editing in .
Front Bioeng Biotechnol. 2022 May 30;10:924914. doi: 10.3389/fbioe.2022.924914. eCollection 2022.
3
Domestication reprogrammed the budding yeast life cycle.
Nat Ecol Evol. 2022 Apr;6(4):448-460. doi: 10.1038/s41559-022-01671-9. Epub 2022 Feb 24.
4
Wild Yeast for the Future: Exploring the Use of Wild Strains for Wine and Beer Fermentation.
Front Genet. 2020 Nov 2;11:589350. doi: 10.3389/fgene.2020.589350. eCollection 2020.
7
Reshuffling yeast chromosomes with CRISPR/Cas9.
PLoS Genet. 2019 Aug 29;15(8):e1008332. doi: 10.1371/journal.pgen.1008332. eCollection 2019 Aug.
8
Allelic Variants Affect TORC1 Activation and Fermentation Kinetics in .
Front Microbiol. 2019 Jul 31;10:1686. doi: 10.3389/fmicb.2019.01686. eCollection 2019.
9
Genetic variants of TORC1 signaling pathway affect nitrogen consumption in Saccharomyces cerevisiae during alcoholic fermentation.
PLoS One. 2019 Jul 26;14(7):e0220515. doi: 10.1371/journal.pone.0220515. eCollection 2019.
10
Influence of nitrogen status in wine alcoholic fermentation.
Food Microbiol. 2019 Oct;83:71-85. doi: 10.1016/j.fm.2019.04.008. Epub 2019 Apr 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验