Parmenter Tiffany J, Kleinschmidt Margarete, Kinross Kathryn M, Bond Simon T, Li Jason, Kaadige Mohan R, Rao Aparna, Sheppard Karen E, Hugo Willy, Pupo Gulietta M, Pearson Richard B, McGee Sean L, Long Georgina V, Scolyer Richard A, Rizos Helen, Lo Roger S, Cullinane Carleen, Ayer Donald E, Ribas Antoni, Johnstone Ricky W, Hicks Rodney J, McArthur Grant A
1Molecular Oncology Laboratory, Oncogenic Signaling and Growth Control Program, 2Translational Research Laboratory, Cancer Therapeutics Program, 3Bioinformatics Core Facility, 4The Cancer Signalling Laboratory, Oncogenic Signaling and Growth Control Program, 5Gene Regulation Laboratory, Cancer Therapeutics Program, 6Molecular Imaging and Targeted Therapeutics Laboratory, Cancer Therapeutics Program, 7Department of Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne; 8Sir Peter MacCallum Department of Oncology, Departments of 9Biochemistry and Molecular Biology, and 10Pathology, University of Melbourne, Parkville; 11Metabolic Remodelling Laboratory, Metabolic Research Unit, School of Medicine, Deakin University, Waurn Ponds; 12Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria; 13Westmead Institute for Cancer Research, University of Sydney at Westmead Millennium Institute, Westmead; 14Department of Tissue Pathology & Diagnostic Oncology, Royal Prince Alfred Hospital; 15Discipline of Pathology, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia; 16Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah; and 17Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California.
Cancer Discov. 2014 Apr;4(4):423-33. doi: 10.1158/2159-8290.CD-13-0440. Epub 2014 Jan 27.
Deregulated glucose metabolism fulfills the energetic and biosynthetic requirements for tumor growth driven by oncogenes. Because inhibition of oncogenic BRAF causes profound reductions in glucose uptake and a strong clinical benefit in BRAF-mutant melanoma, we examined the role of energy metabolism in responses to BRAF inhibition. We observed pronounced and consistent decreases in glycolytic activity in BRAF-mutant melanoma cells. Moreover, we identified a network of BRAF-regulated transcription factors that control glycolysis in melanoma cells. Remarkably, this network of transcription factors, including hypoxia-inducible factor-1α, MYC, and MONDOA (MLXIP), drives glycolysis downstream of BRAF(V600), is critical for responses to BRAF inhibition, and is modulated by BRAF inhibition in clinical melanoma specimens. Furthermore, we show that concurrent inhibition of BRAF and glycolysis induces cell death in BRAF inhibitor (BRAFi)-resistant melanoma cells. Thus, we provide a proof-of-principle for treatment of melanoma with combinations of BRAFis and glycolysis inhibitors.
BRAF is suppress glycolysis and provide strong clinical benefi t in BRAF V600 melanoma. We show that BRAF inhibition suppresses glycolysis via a network of transcription factors that are critical for complete BRAFi responses. Furthermore, we provide evidence for the clinical potential of therapies that combine BRAFis with glycolysis inhibitors.
葡萄糖代谢失调满足了癌基因驱动的肿瘤生长的能量和生物合成需求。由于抑制致癌性BRAF会导致葡萄糖摄取显著减少,并在BRAF突变型黑色素瘤中产生显著的临床益处,我们研究了能量代谢在对BRAF抑制反应中的作用。我们观察到BRAF突变型黑色素瘤细胞的糖酵解活性明显且持续下降。此外,我们确定了一个由BRAF调节的转录因子网络,该网络控制黑色素瘤细胞中的糖酵解。值得注意的是,这个转录因子网络,包括缺氧诱导因子-1α、MYC和MONDOA(MLXIP),在BRAF(V600)下游驱动糖酵解,对BRAF抑制反应至关重要,并在临床黑色素瘤标本中受到BRAF抑制的调节。此外,我们表明同时抑制BRAF和糖酵解会诱导BRAF抑制剂(BRAFi)耐药的黑色素瘤细胞死亡。因此,我们为联合使用BRAFi和糖酵解抑制剂治疗黑色素瘤提供了原理证明。
BRAF抑制糖酵解,并在BRAF V600黑色素瘤中产生显著的临床益处。我们表明,BRAF抑制通过一个转录因子网络抑制糖酵解,该网络对完全的BRAFi反应至关重要。此外,我们为联合使用BRAFi和糖酵解抑制剂的疗法的临床潜力提供了证据。