From the Brazilian Biosciences National Laboratory and.
J Biol Chem. 2014 Mar 14;289(11):7362-73. doi: 10.1074/jbc.M113.537167. Epub 2014 Jan 27.
Arabinanases (ABNs, EC 3.2.1.99) are promising catalysts for environmentally friendly biomass conversion into energy and chemicals. These enzymes catalyze the hydrolysis of the α-1,5-linked L-arabinofuranoside backbone of plant cell wall arabinans releasing arabino-oligosaccharides and arabinose, the second most abundant pentose in nature. In this work, new findings about the molecular mechanisms governing activation, functional differentiation, and catalysis of GH43 ABNs are presented. Biophysical, mutational, and biochemical studies with the hyperthermostable two-domain endo-acting ABN from Thermotoga petrophila (TpABN) revealed how some GH43 ABNs are activated by calcium ions via hyperpolarization of the catalytically relevant histidine and the importance of the ancillary domain for catalysis and conformational stability. On the other hand, the two GH43 ABNs from rumen metagenome, ARN2 and ARN3, presented a calcium-independent mechanism in which sodium is the most likely substituent for calcium ions. The crystal structure of the two-domain endo-acting ARN2 showed that its ability to efficiently degrade branched substrates is due to a larger catalytic interface with higher accessibility than that observed in other ABNs with preference for linear arabinan. Moreover, crystallographic characterization of the single-domain exo-acting ARN3 indicated that its cleavage pattern producing arabinose is associated with the chemical recognition of the reducing end of the substrate imposed by steric impediments at the aglycone-binding site. By structure-guided rational design, ARN3 was converted into a classical endo enzyme, confirming the role of the extended Arg(203)-Ala(230) loop in determining its action mode. These results reveal novel molecular aspects concerning the functioning of GH43 ABNs and provide new strategies for arabinan degradation.
阿拉伯聚糖酶(ABNs,EC 3.2.1.99)是将环境友好型生物质转化为能源和化学品的有前途的催化剂。这些酶催化植物细胞壁阿拉伯聚糖中α-1,5 键合的 L-阿拉伯呋喃糖苷主链的水解,释放阿拉伯低聚糖和阿拉伯糖,阿拉伯糖是自然界中第二丰富的戊糖。在这项工作中,提出了关于 GH43 ABN 激活、功能分化和催化的分子机制的新发现。使用来自嗜热栖热菌(Thermotoga petrophila)的超耐热双结构域内切 ABN(TpABN)进行的生物物理、突变和生化研究表明,一些 GH43 ABN 如何通过使催化相关的组氨酸超极化来被钙离子激活,以及辅助结构域对催化和构象稳定性的重要性。另一方面,来自瘤胃宏基因组的两个 GH43 ABN,ARN2 和 ARN3,呈现出一种不依赖于钙离子的机制,其中钠离子最有可能取代钙离子。双结构域内切 ARN2 的晶体结构表明,其有效降解支链底物的能力归因于更大的催化界面,其可及性高于其他偏好线性阿拉伯聚糖的 ABN。此外,单结构域外切 ARN3 的晶体结构表征表明,其产生阿拉伯糖的切割模式与在糖基结合位点处空间位阻引起的底物还原端的化学识别有关。通过结构导向的合理设计,将 ARN3 转化为经典的内切酶,证实了扩展的 Arg(203)-Ala(230)环在确定其作用模式中的作用。这些结果揭示了 GH43 ABN 功能的新分子方面,并为阿拉伯聚糖的降解提供了新的策略。