Suppr超能文献

结合计算机模拟和脑内方法进行SAMPL4中的虚拟筛选和构象预测。

Combining in silico and in cerebro approaches for virtual screening and pose prediction in SAMPL4.

作者信息

Voet Arnout R D, Kumar Ashutosh, Berenger Francois, Zhang Kam Y J

机构信息

Zhang Initiative Research Unit, Institute Laboratories, RIKEN, 2-1 Hirosawa, Wakō, Saitama, 351-0198, Japan.

出版信息

J Comput Aided Mol Des. 2014 Apr;28(4):363-73. doi: 10.1007/s10822-013-9702-2. Epub 2014 Jan 21.

Abstract

The SAMPL challenges provide an ideal opportunity for unbiased evaluation and comparison of different approaches used in computational drug design. During the fourth round of this SAMPL challenge, we participated in the virtual screening and binding pose prediction on inhibitors targeting the HIV-1 integrase enzyme. For virtual screening, we used well known and widely used in silico methods combined with personal in cerebro insights and experience. Regular docking only performed slightly better than random selection, but the performance was significantly improved upon incorporation of additional filters based on pharmacophore queries and electrostatic similarities. The best performance was achieved when logical selection was added. For the pose prediction, we utilized a similar consensus approach that amalgamated the results of the Glide-XP docking with structural knowledge and rescoring. The pose prediction results revealed that docking displayed reasonable performance in predicting the binding poses. However, prediction performance can be improved utilizing scientific experience and rescoring approaches. In both the virtual screening and pose prediction challenges, the top performance was achieved by our approaches. Here we describe the methods and strategies used in our approaches and discuss the rationale of their performances.

摘要

SAMPL挑战为公正评估和比较计算药物设计中使用的不同方法提供了理想机会。在SAMPL挑战的第四轮中,我们参与了针对HIV-1整合酶的抑制剂的虚拟筛选和结合姿态预测。对于虚拟筛选,我们使用了广为人知且广泛应用的计算机方法,并结合个人的脑内见解和经验。常规对接仅比随机选择略好,但基于药效团查询和静电相似性加入额外筛选器后,性能显著提高。添加逻辑选择时性能最佳。对于姿态预测,我们采用了类似的共识方法,将Glide-XP对接结果与结构知识和重新评分相结合。姿态预测结果表明,对接在预测结合姿态方面表现出合理性能。然而,利用科学经验和重新评分方法可以提高预测性能。在虚拟筛选和姿态预测挑战中,我们的方法都取得了最佳性能。在此我们描述我们方法中使用的方法和策略,并讨论其性能的原理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验