Institute of Plant Biology, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland; Swiss Federal Institute of Aquatic Science and Technology (Eawag), Environmental Microbiology, Überlandstrasse 133, 8600 Dübendorf, Switzerland; Institute of Evolutionary Biology and Centre for Immunity, Infection and Evolution, University of Edinburgh, West Mains Road, Ashworth Laboratories, Edinburgh EH9 3JT, UK.
Evol Med Public Health. 2014 Jan;2014(1):18-29. doi: 10.1093/emph/eou003. Epub 2014 Jan 30.
Conventional antibiotics select strongly for resistance and are consequently losing efficacy worldwide. Extracellular quenching of shared virulence factors could represent a more promising strategy because (i) it reduces the available routes to resistance (as extracellular action precludes any mutations blocking a drug's entry into cells or hastening its exit) and (ii) it weakens selection for resistance, as fitness benefits to emergent mutants are diluted across all cells in a cooperative collective. Here, we tested this hypothesis empirically.
We used gallium to quench the iron-scavenging siderophores secreted and shared among pathogenic Pseudomonas aeruginosa bacteria, and quantitatively monitored its effects on growth in vitro. We assayed virulence in acute infections of caterpillar hosts (Galleria mellonella), and tracked resistance emergence over time using experimental evolution.
Gallium strongly inhibited bacterial growth in vitro, primarily via its siderophore quenching activity. Moreover, bacterial siderophore production peaked at intermediate gallium concentrations, indicating additional metabolic costs in this range. In vivo, gallium attenuated virulence and growth-even more so than in infections with siderophore-deficient strains. Crucially, while resistance soon evolved against conventional antibiotic treatments, gallium treatments retained their efficacy over time.
Extracellular quenching of bacterial public goods could offer an effective and evolutionarily robust control strategy.
传统抗生素的耐药性选择作用很强,因此在全球范围内的疗效正在下降。细胞外共享毒力因子的淬灭可能是一种更有前途的策略,因为 (i) 它减少了耐药性的可用途径(因为细胞外作用排除了任何阻止药物进入细胞或加速其排出的突变),并且 (ii) 它削弱了对耐药性的选择,因为新兴突变体的适应性优势在合作的集体中会在所有细胞中稀释。在这里,我们通过实验检验了这一假设。
我们使用镓来淬灭致病性铜绿假单胞菌细菌分泌和共享的铁掠夺性铁载体,并定量监测其对体外生长的影响。我们在鳞翅目幼虫(家蚕)的急性感染中检测了毒力,并通过实验进化跟踪了耐药性的出现。
镓在体外强烈抑制细菌生长,主要通过其铁载体淬灭活性。此外,细菌铁载体的产生在镓浓度的中间达到峰值,表明在该范围内存在额外的代谢成本。在体内,镓减弱了毒力和生长——比缺铁载体缺陷菌株的感染更明显。至关重要的是,虽然针对常规抗生素治疗的耐药性很快就出现了,但镓治疗的疗效随着时间的推移而保持。
细菌公共物品的细胞外淬灭可能提供一种有效且进化上稳健的控制策略。