Suppr超能文献

溶解氧浓度降低对造礁石珊瑚和底栖藻类生理及荧光的影响。

Effects of reduced dissolved oxygen concentrations on physiology and fluorescence of hermatypic corals and benthic algae.

机构信息

Department of Biology, San Diego State University , United States ; Scripps Institution of Oceanography, University of California , San Diego , United States.

Scripps Institution of Oceanography, University of California , San Diego , United States.

出版信息

PeerJ. 2014 Jan 2;2:e235. doi: 10.7717/peerj.235. eCollection 2014.

Abstract

While shifts from coral to seaweed dominance have become increasingly common on coral reefs and factors triggering these shifts successively identified, the primary mechanisms involved in coral-algae interactions remain unclear. Amongst various potential mechanisms, algal exudates can mediate increases in microbial activity, leading to localized hypoxic conditions which may cause coral mortality in the direct vicinity. Most of the processes likely causing such algal exudate induced coral mortality have been quantified (e.g., labile organic matter release, increased microbial metabolism, decreased dissolved oxygen availability), yet little is known about how reduced dissolved oxygen concentrations affect competitive dynamics between seaweeds and corals. The goals of this study were to investigate the effects of different levels of oxygen including hypoxic conditions on a common hermatypic coral Acropora yongei and the common green alga Bryopsis pennata. Specifically, we examined how photosynthetic oxygen production, dark and daylight adapted quantum yield, intensity and anatomical distribution of the coral innate fluorescence, and visual estimates of health varied with differing background oxygen conditions. Our results showed that the algae were significantly more tolerant to extremely low oxygen concentrations (2-4 mg L(-1)) than corals. Furthermore corals could tolerate reduced oxygen concentrations, but only until a given threshold determined by a combination of exposure time and concentration. Exceeding this threshold led to rapid loss of coral tissue and mortality. This study concludes that hypoxia may indeed play a significant role, or in some cases may even be the main cause, for coral tissue loss during coral-algae interaction processes.

摘要

虽然珊瑚向海藻占优势的转变在珊瑚礁上变得越来越普遍,并且相继确定了触发这些转变的因素,但珊瑚和藻类相互作用中涉及的主要机制仍不清楚。在各种潜在的机制中,藻类分泌物可以调节微生物活性的增加,导致局部缺氧条件,这可能导致直接附近的珊瑚死亡。已经对可能导致这种藻类分泌物诱导珊瑚死亡的大多数过程进行了量化(例如,不稳定有机物质的释放、微生物代谢的增加、溶解氧的减少),但对于低溶解氧浓度如何影响海藻和珊瑚之间的竞争动态知之甚少。本研究的目的是研究不同氧水平(包括缺氧条件)对常见的造礁石珊瑚鹿角杯形珊瑚(Acropora yongei)和常见的绿藻刚毛藻(Bryopsis pennata)的影响。具体来说,我们研究了光合作用产生的氧气、黑暗和日光适应的量子产量、珊瑚固有荧光的强度和解剖分布以及健康的视觉估计如何随不同背景氧气条件而变化。我们的结果表明,藻类对极低氧浓度(2-4 mg/L)的耐受性明显高于珊瑚。此外,珊瑚可以耐受低氧浓度,但只能在暴露时间和浓度组合确定的给定阈值以下。超过这个阈值会导致珊瑚组织迅速丧失和死亡。本研究得出结论,缺氧可能确实在珊瑚-藻类相互作用过程中导致珊瑚组织丧失中发挥重要作用,或者在某些情况下甚至可能是主要原因。

相似文献

2
Visualization of oxygen distribution patterns caused by coral and algae.
PeerJ. 2013 Jul 16;1:e106. doi: 10.7717/peerj.106. Print 2013.
3
Influence of coral and algal exudates on microbially mediated reef metabolism.
PeerJ. 2013 Jul 16;1:e108. doi: 10.7717/peerj.108. Print 2013.
4
In situ oxygen dynamics in coral-algal interactions.
PLoS One. 2012;7(2):e31192. doi: 10.1371/journal.pone.0031192. Epub 2012 Feb 2.
6
Hyperspectral and physiological analyses of coral-algal interactions.
PLoS One. 2009 Nov 26;4(11):e8043. doi: 10.1371/journal.pone.0008043.
7
Macroalgal terpenes function as allelopathic agents against reef corals.
Proc Natl Acad Sci U S A. 2011 Oct 25;108(43):17726-31. doi: 10.1073/pnas.1108628108. Epub 2011 Oct 17.
9
Competitive interactions between corals and turf algae depend on coral colony form.
PeerJ. 2016 May 10;4:e1984. doi: 10.7717/peerj.1984. eCollection 2016.
10
Unseen players shape benthic competition on coral reefs.
Trends Microbiol. 2012 Dec;20(12):621-8. doi: 10.1016/j.tim.2012.08.004. Epub 2012 Sep 1.

引用本文的文献

2
Unraveling the physiological responses of morphologically distinct corals to low oxygen.
PeerJ. 2024 Sep 23;12:e18095. doi: 10.7717/peerj.18095. eCollection 2024.
3
Intersection of coral molecular responses to a localized mortality event and ex situ deoxygenation.
Ecol Evol. 2024 Apr 23;14(4):e11275. doi: 10.1002/ece3.11275. eCollection 2024 Apr.
4
Intra-colony spatial variance of oxyregulation and hypoxic thresholds for key coral species.
Ecol Evol. 2024 Mar 5;14(3):e11100. doi: 10.1002/ece3.11100. eCollection 2024 Mar.
5
Viral predation pressure on coral reefs.
BMC Biol. 2023 Apr 11;21(1):77. doi: 10.1186/s12915-023-01571-9.
7
Effects of Hypoxia on Coral Photobiology and Oxidative Stress.
Biology (Basel). 2022 Jul 18;11(7):1068. doi: 10.3390/biology11071068.
8
Lowering O Interacts with Photoperiod to Alter Physiological Performance of the Coastal Diatom .
Microorganisms. 2021 Dec 9;9(12):2541. doi: 10.3390/microorganisms9122541.
10
Low oxygen levels caused by Noctiluca scintillans bloom kills corals in Gulf of Mannar, India.
Sci Rep. 2020 Dec 17;10(1):22133. doi: 10.1038/s41598-020-79152-x.

本文引用的文献

2
Allelopathic interaction between a reef coelenterate and benthic algae.
Oecologia. 1984 Aug;63(2):194-198. doi: 10.1007/BF00379877.
3
Visualization of oxygen distribution patterns caused by coral and algae.
PeerJ. 2013 Jul 16;1:e106. doi: 10.7717/peerj.106. Print 2013.
6
Effects of coral reef benthic primary producers on dissolved organic carbon and microbial activity.
PLoS One. 2011;6(11):e27973. doi: 10.1371/journal.pone.0027973. Epub 2011 Nov 18.
8
Green fluorescent protein regulation in the coral Acropora yongei during photoacclimation.
J Exp Biol. 2010 Nov 1;213(Pt 21):3644-55. doi: 10.1242/jeb.040881.
9
Rising to the challenge of sustaining coral reef resilience.
Trends Ecol Evol. 2010 Nov;25(11):633-42. doi: 10.1016/j.tree.2010.07.011. Epub 2010 Aug 26.
10
Hyperspectral and physiological analyses of coral-algal interactions.
PLoS One. 2009 Nov 26;4(11):e8043. doi: 10.1371/journal.pone.0008043.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验