Batson W, Zoueshtiagh F, Narayanan R
Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, USA and Institut d'Electronique de Microelectronic et de Nanotechnologie (IEMN) UMR CNRS 8520, University of Lille 1, Ave Poincaré, CS 60069-59652 Villeneuve d'Ascq, France.
Institut d'Electronique de Microelectronic et de Nanotechnologie (IEMN) UMR CNRS 8520, University of Lille 1, Ave Poincaré, CS 60069-59652 Villeneuve d'Ascq, France.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Dec;88(6):063002. doi: 10.1103/PhysRevE.88.063002. Epub 2013 Dec 2.
This work discusses the role of gravity on the Faraday instability, and the differences one can expect to observe in a low-gravity experiment when compared to an earth-based system. These differences are discussed in the context of the viscous linear theory for laterally infinite systems, and a surprising result of the analysis is the existence of a crossover frequency where an interface in low gravity switches from being less to more stable than an earth-based system. We propose this crossover exists in all Faraday systems, and the frequency at which it occurs is shown to be strongly influenced by layer height. In presenting these results physical explanations are provided for the behavior of the predicted forcing amplitude thresholds and wave number selection.
这项工作讨论了重力对法拉第不稳定性的作用,以及与基于地球的系统相比,在低重力实验中可能观察到的差异。这些差异是在横向无限系统的粘性线性理论背景下进行讨论的,分析的一个惊人结果是存在一个交叉频率,在该频率下,低重力环境中的界面从比基于地球的系统更不稳定转变为更稳定。我们认为这种交叉存在于所有法拉第系统中,并且它发生的频率受层高度的影响很大。在展示这些结果时,针对预测的强迫振幅阈值和波数选择的行为提供了物理解释。