Suppr超能文献

具有复合 In2O3-ZnO-ZnGa2O4 纳米纤维网络作为有源通道层的低压工作场效应晶体管。

Low voltage operating field effect transistors with composite In2O3-ZnO-ZnGa2O4 nanofiber network as active channel layer.

机构信息

Optoelectronic Materials Center, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul, Republic of Korea.

出版信息

ACS Nano. 2014 Mar 25;8(3):2318-27. doi: 10.1021/nn405769j. Epub 2014 Feb 7.

Abstract

Field effect transistors (FETs), incorporating metal-oxide nanofibers as the active conductive channel, have the potential for driving the widespread application of nanowire or nanofiber FETs-based electronics. Here we report on low voltage FETs with integrated electrospun In2O3-ZnO-ZnGa2O4 composite fiber channel layers and high-K dielectric (MgO)0.3-(Bi1.5Zn1.0Nb1.5O7)0.7 gate insulator and compare their performance against FETs utilizing conductive single phase, polycrystalline ZnO or In2O3 channel layers. The polycrystalline In2O3-ZnO-ZnGa2O4 composite fibers provide superior performance with high field effect mobility (∼7.04 cm2 V(-1) s(-1)), low subthreshold swing (390 mV/dec), and low threshold voltage (1.0 V) combined with excellent saturation, likely resulting from the effective blocking of high current-flow through the In2O3 and ZnO nanocrystallites by the insulating spinel ZnGa2O4 phase. The microstructural evolution of the individual In2O3, ZnO, and ZnGa2O4 phases in composite fibers is clearly observed by high resolution TEM. A systematic examination of channel area coverage, ranging from single fiber to over 90% coverage, demonstrates that low coverage results in relatively low current outputs and reduced reproducibility which we attribute to the difficulty in positioning fibers and fiber length control. On the other hand, those with ∼80% coverage exhibited high field effect mobility, high on/off current ratios (>10(5)), and negligible hysteresis following 15 sweep voltage cycles. A special feature of this work is the application of the FETs to modulate the properties of complex polycrystalline nanocomposite channels.

摘要

场效应晶体管(FET),将金属氧化物纳米纤维作为有源导电通道,具有推动基于纳米线或纳米纤维 FET 的电子学广泛应用的潜力。在此,我们报告了具有集成电纺 In2O3-ZnO-ZnGa2O4 复合纤维沟道层和高-K 介电(MgO)0.3-(Bi1.5Zn1.0Nb1.5O7)0.7 栅极绝缘体的低电压 FET,并将其性能与利用导电单相、多晶 ZnO 或 In2O3 沟道层的 FET 进行比较。多晶 In2O3-ZnO-ZnGa2O4 复合纤维提供了优异的性能,具有高场效应迁移率(约 7.04 cm2 V-1 s-1)、低亚阈值摆幅(390 mV/dec)和低阈值电压(1.0 V),同时具有出色的饱和性能,这可能是由于绝缘尖晶石 ZnGa2O4 相有效阻止了 In2O3 和 ZnO 纳米晶的高电流流动。通过高分辨率 TEM 可以清楚地观察到复合纤维中单个 In2O3、ZnO 和 ZnGa2O4 相的微结构演变。对沟道面积覆盖率(从单根纤维到超过 90%)进行系统研究表明,低覆盖率导致相对较低的电流输出和较低的重现性,我们将其归因于纤维定位和纤维长度控制的困难。另一方面,那些覆盖率约为 80%的纤维表现出高场效应迁移率、高导通/关断电流比(>105),并且在 15 个扫描电压循环后几乎没有滞后。这项工作的一个特点是将 FET 应用于调制复杂多晶纳米复合材料通道的性质。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验