Institute of Neuroscience, University of Oregon, Eugene, 97403-1254 OR, USA.
INRA, UR1037 LPGP, Campus de Beaulieu, F-35000 Rennes, France.
Comp Biochem Physiol C Toxicol Pharmacol. 2014 Jun;163:24-36. doi: 10.1016/j.cbpc.2014.01.005. Epub 2014 Jan 30.
Teleost fish are important models for human biology, health, and disease. Because genome duplication in a teleost ancestor (TGD) impacts the evolution of teleost genome structure and gene repertoires, we must discriminate gene functions that are shared and ancestral from those that are lineage-specific in teleosts or tetrapods to accurately apply inferences from teleost disease models to human health. Generalizations must account both for the TGD and for divergent evolution between teleosts and tetrapods after the likely two rounds of genome duplication shared by all vertebrates. Progress in sequencing techniques provides new opportunities to generate genomic and transcriptomic information from a broad range of phylogenetically informative taxa that facilitate detailed understanding of gene family and gene function evolution. We illustrate here the use of new sequence resources from spotted gar (Lepisosteus oculatus), a rayfin fish that diverged from teleosts before the TGD, as well as RNA-Seq data from gar and multiple teleost lineages to reconstruct the evolution of the Paired-related homeobox (Prrx) transcription factor gene family, which is involved in the development of mesoderm and neural crest-derived mesenchyme. We show that for Prrx genes, the spotted gar genome and gene expression patterns mimic mammals better than teleosts do. Analyses force the seemingly paradoxical conclusion that regulatory mechanisms for the limb expression domains of Prrx genes existed before the evolution of paired appendages. Detailed evolutionary analyses like those reported here are required to identify fish species most similar to the human genome to optimally connect fish models to human gene functions in health and disease.
硬骨鱼是人类生物学、健康和疾病的重要模型。由于硬骨鱼祖先的基因组加倍(TGD)影响了硬骨鱼基因组结构和基因库的进化,因此我们必须区分在硬骨鱼或四足动物中具有共享和祖先的基因功能,以及具有谱系特异性的基因功能,以便准确地将硬骨鱼疾病模型的推论应用于人类健康。概括时必须考虑到 TGD,以及在所有脊椎动物可能经历的两轮基因组加倍之后,硬骨鱼和四足动物之间的分歧进化。测序技术的进步为广泛的具有系统发育信息的分类群提供了生成基因组和转录组信息的新机会,从而有助于详细了解基因家族和基因功能的进化。我们在这里举例说明了如何利用新的斑点雀鳝(Lepisosteus oculatus)序列资源,斑点雀鳝是一种在 TGD 之前从硬骨鱼分化出来的射线鳍鱼,以及来自雀鳝和多个硬骨鱼谱系的 RNA-Seq 数据,来重建参与中胚层和神经嵴衍生间充质发育的 Paired-related homeobox (Prrx) 转录因子基因家族的进化。我们表明,对于 Prrx 基因,斑点雀鳝的基因组和基因表达模式比硬骨鱼更类似于哺乳动物。分析得出了一个看似矛盾的结论,即 Prrx 基因的肢体表达域的调节机制存在于配对附肢进化之前。像这里报告的那样进行详细的进化分析对于识别与人类基因组最相似的鱼类物种是必需的,以便在健康和疾病中最佳地将鱼类模型与人类基因功能联系起来。
Comp Biochem Physiol C Toxicol Pharmacol. 2014-1-30
Genes (Basel). 2019-8-17
Comp Biochem Physiol Part D Genomics Proteomics. 2017-10-13
J Exp Zool B Mol Dev Evol. 2017-11
J Exp Zool B Mol Dev Evol. 2017-11
BMC Evol Biol. 2012-3-5
Front Cell Dev Biol. 2024-5-30
Genes (Basel). 2022-5-20
Front Cell Dev Biol. 2022-2-10
Dis Model Mech. 2014-2
Proc Natl Acad Sci U S A. 2013-9-16
Proc Natl Acad Sci U S A. 2013-7-1
BMC Biol. 2013-5-9
PLoS Curr. 2013-4-18