Suppr超能文献

全基因组复制后基因表达的演变:来自雀鳝基因组的新见解。

Evolution of gene expression after whole-genome duplication: New insights from the spotted gar genome.

作者信息

Pasquier Jeremy, Braasch Ingo, Batzel Peter, Cabau Cedric, Montfort Jérome, Nguyen Thaovi, Jouanno Elodie, Berthelot Camille, Klopp Christophe, Journot Laurent, Postlethwait John H, Guiguen Yann, Bobe Julien

机构信息

INRA, UR1037 LPGP, Campus de Beaulieu, Rennes, France.

Department of Integrative Biology and Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, Michigan.

出版信息

J Exp Zool B Mol Dev Evol. 2017 Nov;328(7):709-721. doi: 10.1002/jez.b.22770. Epub 2017 Sep 25.

Abstract

Whole-genome duplications (WGDs) are important evolutionary events. Our understanding of underlying mechanisms, including the evolution of duplicated genes after WGD, however, remains incomplete. Teleost fish experienced a common WGD (teleost-specific genome duplication, or TGD) followed by a dramatic adaptive radiation leading to more than half of all vertebrate species. The analysis of gene expression patterns following TGD at the genome level has been limited by the lack of suitable genomic resources. The recent concomitant release of the genome sequence of spotted gar (a representative of holosteans, the closest-related lineage of teleosts that lacks the TGD) and the tissue-specific gene expression repertoires of over 20 holostean and teleostean fish species, including spotted gar, zebrafish, and medaka (the PhyloFish project), offers a unique opportunity to study the evolution of gene expression following TGD in teleosts. We show that most TGD duplicates gained their current status (loss of one duplicate gene or retention of both duplicates) relatively rapidly after TGD (i.e., prior to the divergence of medaka and zebrafish lineages). The loss of one duplicate is the most common fate after TGD with a probability of approximately 80%. In addition, the fate of duplicate genes after TGD, including subfunctionalization, neofunctionalization, or retention of two "similar" copies occurred not only before but also after the divergence of species tested, in consistency with a role of the TGD in speciation and/or evolution of gene function. Finally, we report novel cases of TGD ohnolog subfunctionalization and neofunctionalization that further illustrate the importance of these processes.

摘要

全基因组复制(WGDs)是重要的进化事件。然而,我们对其潜在机制的理解,包括WGD后复制基因的进化,仍不完整。硬骨鱼经历了一次共同的WGD(硬骨鱼特异性基因组复制,或TGD),随后是一次剧烈的适应性辐射,导致了超过半数的脊椎动物物种。由于缺乏合适的基因组资源,在基因组水平上对TGD后基因表达模式的分析受到了限制。最近,斑点雀鳝(全骨鱼类的代表,全骨鱼类是与硬骨鱼亲缘关系最近且缺乏TGD的谱系)的基因组序列以及包括斑点雀鳝、斑马鱼和青鳉在内的20多种全骨鱼类和硬骨鱼类的组织特异性基因表达谱(PhyloFish项目)同时发布,为研究硬骨鱼TGD后基因表达的进化提供了独特的机会。我们发现,大多数TGD复制基因在TGD后相对较快地获得了它们目前的状态(一个复制基因丢失或两个复制基因都保留)(即,在青鳉和斑马鱼谱系分化之前)。一个复制基因的丢失是TGD后最常见的命运,概率约为80%。此外,TGD后复制基因的命运,包括亚功能化、新功能化或保留两个“相似”拷贝,不仅发生在受试物种分化之前,也发生在分化之后,这与TGD在物种形成和/或基因功能进化中的作用一致。最后,我们报告了TGD直系同源基因亚功能化和新功能化的新案例,进一步说明了这些过程的重要性。

相似文献

1
Evolution of gene expression after whole-genome duplication: New insights from the spotted gar genome.
J Exp Zool B Mol Dev Evol. 2017 Nov;328(7):709-721. doi: 10.1002/jez.b.22770. Epub 2017 Sep 25.
2
3
Diversification of Hox Gene Clusters in Osteoglossomorph Fish in Comparison to Other Teleosts and the Spotted Gar Outgroup.
J Exp Zool B Mol Dev Evol. 2017 Nov;328(7):638-644. doi: 10.1002/jez.b.22726. Epub 2017 Feb 23.
4
Fatty acid-binding protein genes of the ancient, air-breathing, ray-finned fish, spotted gar (Lepisosteus oculatus).
Comp Biochem Physiol Part D Genomics Proteomics. 2018 Mar;25:19-25. doi: 10.1016/j.cbd.2017.10.002. Epub 2017 Oct 13.
6
The Molecular Evolution of Circadian Clock Genes in Spotted Gar ().
Genes (Basel). 2019 Aug 17;10(8):622. doi: 10.3390/genes10080622.
7
Connectivity of vertebrate genomes: Paired-related homeobox (Prrx) genes in spotted gar, basal teleosts, and tetrapods.
Comp Biochem Physiol C Toxicol Pharmacol. 2014 Jun;163:24-36. doi: 10.1016/j.cbpc.2014.01.005. Epub 2014 Jan 30.
9
Evolution after Whole-Genome Duplication: Teleost MicroRNAs.
Mol Biol Evol. 2021 Jul 29;38(8):3308-3331. doi: 10.1093/molbev/msab105.

引用本文的文献

2
Decoding microRNA arm switching: a key to evolutionary innovation and gene regulation.
Cell Mol Life Sci. 2025 May 10;82(1):197. doi: 10.1007/s00018-025-05663-3.
3
Genome-wide identification, phylogeny, and expression analysis of PEBP gene family in .
Front Genet. 2025 Mar 26;16:1530910. doi: 10.3389/fgene.2025.1530910. eCollection 2025.
6
Whole Genome Duplication and Gene Evolution in the Hyperdiverse Venomous Gastropods.
Mol Biol Evol. 2023 Aug 3;40(8). doi: 10.1093/molbev/msad171.
7
Nitric Oxide Function and Nitric Oxide Synthase Evolution in Aquatic Chordates.
Int J Mol Sci. 2023 Jul 6;24(13):11182. doi: 10.3390/ijms241311182.
8
Evolution and phylogenetic distribution of endo-α-mannosidase.
Glycobiology. 2023 Oct 29;33(9):687-699. doi: 10.1093/glycob/cwad041.
9
Salmonidae Genome: Features, Evolutionary and Phylogenetic Characteristics.
Genes (Basel). 2022 Nov 27;13(12):2221. doi: 10.3390/genes13122221.

本文引用的文献

1
Little evidence for enhanced phenotypic evolution in early teleosts relative to their living fossil sister group.
Proc Natl Acad Sci U S A. 2016 Oct 11;113(41):11531-11536. doi: 10.1073/pnas.1607237113. Epub 2016 Sep 26.
2
3
The Atlantic salmon genome provides insights into rediploidization.
Nature. 2016 May 12;533(7602):200-5. doi: 10.1038/nature17164. Epub 2016 Apr 18.
4
The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons.
Nat Genet. 2016 Apr;48(4):427-37. doi: 10.1038/ng.3526. Epub 2016 Mar 7.
5
Rapid genome reshaping by multiple-gene loss after whole-genome duplication in teleost fish suggested by mathematical modeling.
Proc Natl Acad Sci U S A. 2015 Dec 1;112(48):14918-23. doi: 10.1073/pnas.1507669112. Epub 2015 Nov 17.
6
Whole-genome duplication in teleost fishes and its evolutionary consequences.
Mol Genet Genomics. 2014 Dec;289(6):1045-60. doi: 10.1007/s00438-014-0889-2. Epub 2014 Aug 5.
9
Multi-locus phylogenetic analysis reveals the pattern and tempo of bony fish evolution.
PLoS Curr. 2013 Apr 16;5:ecurrents.tol.2ca8041495ffafd0c92756e75247483e. doi: 10.1371/currents.tol.2ca8041495ffafd0c92756e75247483e.
10
The tree of life and a new classification of bony fishes.
PLoS Curr. 2013 Apr 18;5:ecurrents.tol.53ba26640df0ccaee75bb165c8c26288. doi: 10.1371/currents.tol.53ba26640df0ccaee75bb165c8c26288.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验