Pasquier Jeremy, Braasch Ingo, Batzel Peter, Cabau Cedric, Montfort Jérome, Nguyen Thaovi, Jouanno Elodie, Berthelot Camille, Klopp Christophe, Journot Laurent, Postlethwait John H, Guiguen Yann, Bobe Julien
INRA, UR1037 LPGP, Campus de Beaulieu, Rennes, France.
Department of Integrative Biology and Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, Michigan.
J Exp Zool B Mol Dev Evol. 2017 Nov;328(7):709-721. doi: 10.1002/jez.b.22770. Epub 2017 Sep 25.
Whole-genome duplications (WGDs) are important evolutionary events. Our understanding of underlying mechanisms, including the evolution of duplicated genes after WGD, however, remains incomplete. Teleost fish experienced a common WGD (teleost-specific genome duplication, or TGD) followed by a dramatic adaptive radiation leading to more than half of all vertebrate species. The analysis of gene expression patterns following TGD at the genome level has been limited by the lack of suitable genomic resources. The recent concomitant release of the genome sequence of spotted gar (a representative of holosteans, the closest-related lineage of teleosts that lacks the TGD) and the tissue-specific gene expression repertoires of over 20 holostean and teleostean fish species, including spotted gar, zebrafish, and medaka (the PhyloFish project), offers a unique opportunity to study the evolution of gene expression following TGD in teleosts. We show that most TGD duplicates gained their current status (loss of one duplicate gene or retention of both duplicates) relatively rapidly after TGD (i.e., prior to the divergence of medaka and zebrafish lineages). The loss of one duplicate is the most common fate after TGD with a probability of approximately 80%. In addition, the fate of duplicate genes after TGD, including subfunctionalization, neofunctionalization, or retention of two "similar" copies occurred not only before but also after the divergence of species tested, in consistency with a role of the TGD in speciation and/or evolution of gene function. Finally, we report novel cases of TGD ohnolog subfunctionalization and neofunctionalization that further illustrate the importance of these processes.
全基因组复制(WGDs)是重要的进化事件。然而,我们对其潜在机制的理解,包括WGD后复制基因的进化,仍不完整。硬骨鱼经历了一次共同的WGD(硬骨鱼特异性基因组复制,或TGD),随后是一次剧烈的适应性辐射,导致了超过半数的脊椎动物物种。由于缺乏合适的基因组资源,在基因组水平上对TGD后基因表达模式的分析受到了限制。最近,斑点雀鳝(全骨鱼类的代表,全骨鱼类是与硬骨鱼亲缘关系最近且缺乏TGD的谱系)的基因组序列以及包括斑点雀鳝、斑马鱼和青鳉在内的20多种全骨鱼类和硬骨鱼类的组织特异性基因表达谱(PhyloFish项目)同时发布,为研究硬骨鱼TGD后基因表达的进化提供了独特的机会。我们发现,大多数TGD复制基因在TGD后相对较快地获得了它们目前的状态(一个复制基因丢失或两个复制基因都保留)(即,在青鳉和斑马鱼谱系分化之前)。一个复制基因的丢失是TGD后最常见的命运,概率约为80%。此外,TGD后复制基因的命运,包括亚功能化、新功能化或保留两个“相似”拷贝,不仅发生在受试物种分化之前,也发生在分化之后,这与TGD在物种形成和/或基因功能进化中的作用一致。最后,我们报告了TGD直系同源基因亚功能化和新功能化的新案例,进一步说明了这些过程的重要性。