National Institute of Advanced Industrial Science and Technology (AIST), Spintronics Research Center, Tsukuba, Ibaraki 305-8568, Japan.
Center for Spintronics Research, Korea Institute of Science and Technology (KIST), Seoul 136-791, Korea.
Nat Mater. 2014 Apr;13(4):360-6. doi: 10.1038/nmat3869. Epub 2014 Feb 2.
Spin currents are paramount to manipulate the magnetization of ferromagnetic elements in spin-based memory, logic and microwave devices, and to induce spin polarization in non-magnetic materials. A unique approach to create spin currents employs thermal gradients and heat flow. Here we demonstrate that a thermal spin current can be tuned conveniently by a voltage. In magnetic tunnel contacts to semiconductors (silicon and germanium), it is shown that a modest voltage (~200 mV) changes the thermal spin current induced by Seebeck spin tunnelling by a factor of five, because it modifies the relevant tunnelling states and thereby the spin-dependent thermoelectric parameters. The magnitude and direction of the spin current is also modulated by combining electrical and thermal spin currents with equal or opposite sign. The results demonstrate that spin-dependent thermoelectric properties away from the Fermi energy are accessible, and open the way towards tailoring thermal spin currents and torques by voltage, rather than material design.
自旋流对于控制基于自旋的存储器、逻辑和微波器件中铁磁元件的磁化以及在非磁性材料中诱导自旋极化至关重要。一种独特的产生自旋流的方法是利用热梯度和热流。在这里,我们证明了可以通过电压方便地调节热自旋流。在磁隧道结与半导体(硅和锗)的接触中,我们表明,适度的电压(约 200 mV)可以将塞贝克自旋隧穿产生的热自旋流改变五倍,因为它改变了相关的隧穿状态,从而改变了自旋相关的热电参数。通过组合具有相同或相反符号的电和热自旋流,也可以调节自旋流的大小和方向。这些结果表明,远离费米能的自旋相关热电性质是可以实现的,并为通过电压而不是材料设计来调整热自旋流和转矩开辟了道路。