Suppr超能文献

同义双密码子组第三个核苷酸选择中的定向突变压力与转运RNA

Directional mutation pressure and transfer RNA in choice of the third nucleotide of synonymous two-codon sets.

作者信息

Osawa S, Ohama T, Yamao F, Muto A, Jukes T H, Ozeki H, Umesono K

机构信息

Department of Biology, Nagoya University, Japan.

出版信息

Proc Natl Acad Sci U S A. 1988 Feb;85(4):1124-8. doi: 10.1073/pnas.85.4.1124.

Abstract

Bacterial species have diverged into a series of families, some with high G + C content in their DNA, and other with high A + T content, resulting, respectively, from G.C- and A.T-directional mutation pressures. Such mutation pressure (G.C/A.T pressure) may be an important determinant for codon usage. It has also been suggested that tRNA acts as a selective constraint for determining codon usage. We have studied the relation between G.C/A.T pressure and tRNA constraints in determining choice of the third nucleotide of eight two-codon sets, using codon usage data obtained from protein genes in four bacterial species, Mycoplasma capricolum, Bacillus subtilis, Escherichia coli, and Micrococcus luteus, and in liverwort (Marchantia polymorpha) chloroplasts. The genomic G + C contents of these range from 25% to 74%. The results demonstrate that tRNA levels act additively to A.T and G.C pressure in affecting contents of A (pairing with *UNN anticodons, in which *U indicates a 2-thiouridine derivative) and C (pairing with GNN anticodons) or G (pairing with CNN anticodons), respectively, in third nucleotide positions of codons.

摘要

细菌物种已分化为一系列菌科,其中一些菌科的DNA中鸟嘌呤和胞嘧啶(G + C)含量高,而另一些菌科的腺嘌呤和胸腺嘧啶(A + T)含量高,这分别是由G.C和A.T定向突变压力导致的。这种突变压力(G.C/A.T压力)可能是密码子使用的一个重要决定因素。也有人提出,转运核糖核酸(tRNA)对决定密码子使用起着选择性限制作用。我们利用从四种细菌(山羊支原体、枯草芽孢杆菌、大肠杆菌和藤黄微球菌)以及地钱(多歧苔)叶绿体的蛋白质基因中获得的密码子使用数据,研究了G.C/A.T压力与tRNA限制在决定八个双密码子组第三个核苷酸选择中的关系。这些生物的基因组G + C含量在25%到74%之间。结果表明,tRNA水平在影响密码子第三个核苷酸位置上分别与UNN反密码子(其中U表示2-硫尿苷衍生物)配对的A、与GNN反密码子配对的C或与CNN反密码子配对的G的含量时,与A.T和G.C压力起相加作用。

相似文献

1
Directional mutation pressure and transfer RNA in choice of the third nucleotide of synonymous two-codon sets.
Proc Natl Acad Sci U S A. 1988 Feb;85(4):1124-8. doi: 10.1073/pnas.85.4.1124.
4
Codon reading scheme in Mycoplasma pneumoniae revealed by the analysis of the complete set of tRNA genes.
Nucleic Acids Res. 1993 Oct 25;21(21):4967-74. doi: 10.1093/nar/21.21.4967.
5
Evolution of anticodons: variations in the genetic code.
Cold Spring Harb Symp Quant Biol. 1987;52:769-76. doi: 10.1101/sqb.1987.052.01.086.
6
An extensive study of mutation and selection on the wobble nucleotide in tRNA anticodons in fungal mitochondrial genomes.
J Mol Evol. 2008 May;66(5):484-93. doi: 10.1007/s00239-008-9102-8. Epub 2008 Apr 10.
8
Codon usage and tRNA content in unicellular and multicellular organisms.
Mol Biol Evol. 1985 Jan;2(1):13-34. doi: 10.1093/oxfordjournals.molbev.a040335.
10
Coevolution of codon usage and transfer RNA abundance.
Nature. 1987;325(6106):728-30. doi: 10.1038/325728a0.

引用本文的文献

1
Omics data analysis reveals the system-level constraint on cellular amino acid composition.
Synth Syst Biotechnol. 2024 Mar 5;9(2):304-311. doi: 10.1016/j.synbio.2024.03.001. eCollection 2024 Jun.
3
Plastomes of (Orchidaceae) and Phylogenetic Implications.
Int J Mol Sci. 2022 Sep 5;23(17):10151. doi: 10.3390/ijms231710151.
4
Genome-wide analysis of codon usage in sesame ( L.).
Heliyon. 2021 Dec 29;8(1):e08687. doi: 10.1016/j.heliyon.2021.e08687. eCollection 2022 Jan.
5
Analysis of Codon Usage of Speech Gene among Animals.
Biology (Basel). 2021 Oct 21;10(11):1078. doi: 10.3390/biology10111078.
6
Analysis of Codon Usage Patterns in Based on Transcriptome Data from DB.
Genes (Basel). 2021 Jul 29;12(8):1169. doi: 10.3390/genes12081169.
7
Comparative analysis of codon usage between and mitochondrial genomes.
Mitochondrial DNA B Resour. 2020 Jun 17;5(3):2500-2506. doi: 10.1080/23802359.2020.1780969.

本文引用的文献

1
On the genetic basis of variation and heterogeneity of DNA base composition.
Proc Natl Acad Sci U S A. 1962 Apr 15;48(4):582-92. doi: 10.1073/pnas.48.4.582.
2
The nucleotide sequence of the cloned tufA gene of Escherichia coli.
Gene. 1980 Dec;12(1-2):25-31. doi: 10.1016/0378-1119(80)90012-8.
3
Codon usage and transfer RNA contents: organism-specific codon-choice patterns in reference to the isoacceptor contents.
Cold Spring Harb Symp Quant Biol. 1983;47 Pt 2:1087-97. doi: 10.1101/sqb.1983.047.01.123.
4
The nucleotide sequence of the Escherichia coli fus gene, coding for elongation factor G.
Nucleic Acids Res. 1984 Feb 24;12(4):2181-92. doi: 10.1093/nar/12.4.2181.
6
Markedly unbiased codon usage in Bacillus subtilis.
Gene. 1985;40(1):145-50. doi: 10.1016/0378-1119(85)90035-6.
7
UGA is read as tryptophan in Mycoplasma capricolum.
Proc Natl Acad Sci U S A. 1985 Apr;82(8):2306-9. doi: 10.1073/pnas.82.8.2306.
8
Molecular mechanism of codon recognition by tRNA species with modified uridine in the first position of the anticodon.
Proc Natl Acad Sci U S A. 1985 Aug;82(15):4905-9. doi: 10.1073/pnas.82.15.4905.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验