Department of Biology, University of Ottawa, 30 Marie Curie, P.O. Box 450, Station A, Ottawa, Ontario, Canada.
Ottawa Institute of Systems Biology, Ottawa, Ontario, K1H 8M5, Canada.
Sci Rep. 2019 Feb 28;9(1):3184. doi: 10.1038/s41598-019-39369-x.
The degree to which codon usage can be explained by tRNA abundance in bacterial species is often inadequate, partly because differential tRNA abundance is often approximated by tRNA copy numbers. To better understand the coevolution between tRNA abundance and codon usage, we provide a better estimate of tRNA abundance by profiling tRNA mapped reads (tRNA tpm) using publicly available RNA Sequencing data. To emphasize the feasibility of our approach, we demonstrate that tRNA tpm is consistent with tRNA abundances derived from RNA fingerprinting experiments in Escherichia coli, Bacillus subtilis, and Salmonella enterica. Furthermore, we do not observe an appreciable reduction in tRNA sequencing efficiency due to post-transcriptional methylations in the seven bacteria studied. To determine optimal codons, we calculate codon usage in highly and lowly expressed genes determined by protein per transcript. We found that tRNA tpm is sensitive to identify more translationally optimal codons than gene copy number and early tRNA fingerprinting abundances. Additionally, tRNA tpm improves the predictive power of tRNA adaptation index over codon preference. Our results suggest that dependence of codon usage on tRNA availability is not always associated with species growth-rate. Conversely, tRNA availability is better optimized to codon usage in fast-growing than slow-growing species.
在细菌物种中,密码子使用的程度往往不能被 tRNA 丰度充分解释,部分原因是 tRNA 丰度的差异通常通过 tRNA 拷贝数来近似。为了更好地理解 tRNA 丰度和密码子使用之间的共同进化,我们使用公开可用的 RNA 测序数据来分析 tRNA 映射读取(tRNA tpm),从而更好地估计 tRNA 丰度。为了强调我们的方法的可行性,我们证明了 tRNA tpm 与大肠杆菌、枯草芽孢杆菌和肠炎沙门氏菌的 RNA 指纹实验中得出的 tRNA 丰度一致。此外,我们在研究的 7 种细菌中没有观察到由于转录后甲基化而导致的 tRNA 测序效率明显降低。为了确定最佳密码子,我们根据每个转录物的蛋白计算高度和低度表达基因的密码子使用情况。我们发现,tRNA tpm 比基因拷贝数和早期 tRNA 指纹丰度更能灵敏地识别出更具翻译优势的密码子。此外,tRNA tpm 提高了 tRNA 适应指数对密码子偏好的预测能力。我们的结果表明,密码子使用对 tRNA 可用性的依赖并不总是与物种生长速率相关。相反,tRNA 可用性在快速生长的物种中比在缓慢生长的物种中更好地优化了对密码子的使用。