文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基因共表达网络分析揭示了不同癌症类型中预后基因的共同系统水平特性。

Gene co-expression network analysis reveals common system-level properties of prognostic genes across cancer types.

作者信息

Yang Yang, Han Leng, Yuan Yuan, Li Jun, Hei Nainan, Liang Han

机构信息

1] Division of Biostatistics, The University of Texas Health Science Center at Houston, School of Public Health, Houston, Texas 77030, USA [2] Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.

Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.

出版信息

Nat Commun. 2014;5:3231. doi: 10.1038/ncomms4231.


DOI:10.1038/ncomms4231
PMID:24488081
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC3951205/
Abstract

Prognostic genes are key molecules informative for cancer prognosis and treatment. Previous studies have focused on the properties of individual prognostic genes, but have lacked a global view of their system-level properties. Here we examined their properties in gene co-expression networks for four cancer types using data from 'The Cancer Genome Atlas'. We found that prognostic mRNA genes tend not to be hub genes (genes with an extremely high connectivity), and this pattern is unique to the corresponding cancer-type-specific network. In contrast, the prognostic genes are enriched in modules (a group of highly interconnected genes), especially in module genes conserved across different cancer co-expression networks. The target genes of prognostic miRNA genes show similar patterns. We identified the modules enriched in various prognostic genes, some of which show cross-tumour conservation. Given the cancer types surveyed, our study presents a view of emergent properties of prognostic genes.

摘要

预后基因是对癌症预后和治疗具有重要信息价值的关键分子。以往的研究主要集中在单个预后基因的特性上,但缺乏对其系统层面特性的整体认识。在此,我们利用来自“癌症基因组图谱”的数据,研究了四种癌症类型的基因共表达网络中预后基因的特性。我们发现,预后mRNA基因往往不是枢纽基因(具有极高连接性的基因),且这种模式在相应的癌症类型特异性网络中是独特的。相比之下,预后基因在模块(一组高度相互连接的基因)中富集,尤其是在不同癌症共表达网络中保守的模块基因中。预后miRNA基因的靶基因也表现出类似的模式。我们确定了富含各种预后基因的模块,其中一些显示出跨肿瘤的保守性。鉴于所调查的癌症类型,我们的研究展示了预后基因的新兴特性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba7e/3951205/e64fe2288f08/nihms555419f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba7e/3951205/1ca4df52b212/nihms555419f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba7e/3951205/82d8fa3d36f6/nihms555419f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba7e/3951205/3bc57d105dd4/nihms555419f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba7e/3951205/e64fe2288f08/nihms555419f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba7e/3951205/1ca4df52b212/nihms555419f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba7e/3951205/82d8fa3d36f6/nihms555419f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba7e/3951205/3bc57d105dd4/nihms555419f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba7e/3951205/e64fe2288f08/nihms555419f4.jpg

相似文献

[1]
Gene co-expression network analysis reveals common system-level properties of prognostic genes across cancer types.

Nat Commun. 2014

[2]
A novel lncRNA-miRNA-mRNA competitive endogenous RNA network for uveal melanoma prognosis constructed by weighted gene co-expression network analysis.

Life Sci. 2020-9-11

[3]
Identification of prognostic biomarkers for breast cancer based on miRNA and mRNA co-expression network.

J Cell Biochem. 2019-4-29

[4]
Identification of key modules and genes associated with breast cancer prognosis using WGCNA and ceRNA network analysis.

Aging (Albany NY). 2020-12-9

[5]
Exploration of prognosis-related microRNA and transcription factor co-regulatory networks across cancer types.

RNA Biol. 2019-5-3

[6]
The modularity and dynamicity of miRNA-mRNA interactions in high-grade serous ovarian carcinomas and the prognostic implication.

Comput Biol Chem. 2016-8

[7]
Potential four‑miRNA signature associated with T stage and prognosis of patients with pancreatic ductal adenocarcinoma identified by co‑expression analysis.

Mol Med Rep. 2018-11-19

[8]
Construction of a disease-specific lncRNA-miRNA-mRNA regulatory network reveals potential regulatory axes and prognostic biomarkers for hepatocellular carcinoma.

Cancer Med. 2020-12

[9]
Comprehensive characterization of lncRNA-mRNA related ceRNA network across 12 major cancers.

Oncotarget. 2016-9-27

[10]
Integrated analysis of co-expression and ceRNA network identifies five lncRNAs as prognostic markers for breast cancer.

J Cell Mol Med. 2019-10-15

引用本文的文献

[1]
Exploring the Potential of Zein Nanoparticles in Personalised Cancer Therapy, Highlighting Their Various Methodologies, Applications and Challenges.

J Cell Mol Med. 2025-8

[2]
Drug repositioning for pan-cancers of the digestive system: Identification of amonafide and BX795 as potential therapeutics via integrative Omics analysis.

PLoS One. 2025-6-16

[3]
scRDEN: single-cell dynamic gene rank differential expression network and robust trajectory inference.

Sci Rep. 2025-5-15

[4]
Deciphering genomic codes using advanced natural language processing techniques: a scoping review.

J Am Med Inform Assoc. 2025-4-1

[5]
Multi-tissue network analysis reveals the effect of JNK inhibition on dietary sucrose-induced metabolic dysfunction in rats.

Elife. 2025-2-11

[6]
A graph neural network approach for hierarchical mapping of breast cancer protein communities.

BMC Bioinformatics. 2025-1-21

[7]
Neurotransmitter and metabolic effects of interferon-alpha in association with decreased striatal dopamine in a non-human primate model of cytokine-Induced depression.

Brain Behav Immun. 2025-3

[8]
PyNetCor: a high-performance Python package for large-scale correlation analysis.

NAR Genom Bioinform. 2024-12-18

[9]
AH-6809 mediated regulation of lung adenocarcinoma metastasis through NLRP7 and prognostic analysis of key metastasis-related genes.

Front Pharmacol. 2024-12-4

[10]
Exploring glioma heterogeneity through omics networks: from gene network discovery to causal insights and patient stratification.

BioData Min. 2024-12-18

本文引用的文献

[1]
Comprehensive molecular characterization of clear cell renal cell carcinoma.

Nature. 2013-6-23

[2]
Human diseases through the lens of network biology.

Trends Genet. 2012-12-7

[3]
Comprehensive molecular portraits of human breast tumours.

Nature. 2012-9-23

[4]
Integrated genomic analyses of ovarian carcinoma.

Nature. 2011-6-29

[5]
A comparative study of cancer proteins in the human protein-protein interaction network.

BMC Genomics. 2010-12-1

[6]
Breast cancer biomarker discovery in the functional genomic age: a systematic review of 42 gene expression signatures.

Biomark Insights. 2010-10-27

[7]
Broker genes in human disease.

Genome Biol Evol. 2010-10-11

[8]
Weighted gene coexpression network analysis: state of the art.

J Biopharm Stat. 2010-3

[9]
Histological evaluation of AMPK signalling in primary breast cancer.

BMC Cancer. 2009-9-1

[10]
Prognostic importance of MN1 transcript levels, and biologic insights from MN1-associated gene and microRNA expression signatures in cytogenetically normal acute myeloid leukemia: a cancer and leukemia group B study.

J Clin Oncol. 2009-7-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索