School of Chemical Engineering, the University of Queensland, QLD 4072, Brisbane (Australia); Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, QLD 4072, Brisbane (Australia); Current address: School of Chemical Engineering the University of Adelaide, SA 5005 (Australia).
ChemSusChem. 2014 Feb;7(2):435-41. doi: 10.1002/cssc.201300624.
Carbon nanotubes with specific nitrogen doping are proposed for controllable, highly selective, and reversible CO2 capture. Using density functional theory incorporating long-range dispersion corrections, we investigated the adsorption behavior of CO2 on (7,7) single-walled carbon nanotubes (CNTs) with several nitrogen doping configurations and varying charge states. Pyridinic-nitrogen incorporation in CNTs is found to induce an increasing CO2 adsorption strength with electron injecting, leading to a highly selective CO2 adsorption in comparison with N2 . This functionality could induce intrinsically reversible CO2 adsorption as capture/release can be controlled by switching the charge carrying state of the system on/off. This phenomenon is verified for a number of different models and theoretical methods, with clear ramifications for the possibility of implementation with a broader class of graphene-based materials. A scheme for the implementation of this remarkable reversible electrocatalytic CO2 -capture phenomenon is considered.
我们提出了具有特定氮掺杂的碳纳米管,用于可控、高选择性和可逆的 CO2 捕获。利用包含长程色散校正的密度泛函理论,我们研究了 CO2 在具有几种氮掺杂构型和不同电荷状态的(7,7)单壁碳纳米管(CNT)上的吸附行为。我们发现,在 CNT 中掺入吡啶氮会导致 CO2 吸附强度随电子注入而增加,与 N2 相比,具有高选择性的 CO2 吸附。这种功能可以诱导内在的可逆 CO2 吸附,因为通过打开/关闭系统的电荷携带状态,可以控制捕获/释放。这一现象已经通过许多不同的模型和理论方法得到了验证,这为在更广泛的基于石墨烯的材料中实现这一显著的可逆电催化 CO2 捕获现象提供了明确的依据。我们考虑了实施这一显著的可逆电催化 CO2 捕获现象的方案。