Suppr超能文献

氮掺杂石墨烯和单壁碳纳米管中电子束损伤的原子级描述。

Atomistic description of electron beam damage in nitrogen-doped graphene and single-walled carbon nanotubes.

机构信息

Nanomaterials Group, Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, 00076 Aalto, Finland.

出版信息

ACS Nano. 2012 Oct 23;6(10):8837-46. doi: 10.1021/nn303944f. Epub 2012 Oct 2.

Abstract

By combining ab initio simulations with state-of-the-art electron microscopy and electron energy loss spectroscopy, we study the mechanism of electron beam damage in nitrogen-doped graphene and carbon nanotubes. Our results show that the incorporation of nitrogen atoms results in noticeable knock-on damage in these structures already at an acceleration voltage of 80 kV, at which essentially no damage is created in pristine structures at corresponding doses. Contrary to an early estimate predicting rapid destruction via sputtering of the nitrogen atoms, in the case of substitutional doping, damage is initiated by displacement of carbon atoms neighboring the nitrogen dopant, leading to the conversion of substitutional dopant sites into pyridinic ones. Although such events are relatively rare at 80 kV, they become significant at higher voltages typically used in electron energy loss spectroscopy studies. Correspondingly, we measured an energy loss spectrum time series at 100 kV that provides direct evidence for such conversions in nitrogen-doped single-walled carbon nanotubes, in excellent agreement with our theoretical prediction. Besides providing an improved understanding of the irradiation stability of these structures, we show that structural changes cannot be neglected in their characterization employing high-energy electrons.

摘要

通过将从头算模拟与最先进的电子显微镜和电子能量损失光谱学相结合,我们研究了氮掺杂石墨烯和碳纳米管中电子束损伤的机制。我们的结果表明,在 80kV 的加速电压下,氮原子的掺入会导致这些结构中明显的碰撞损伤,而在相同剂量下,原始结构中几乎不会产生损伤。与早期预测的通过氮原子溅射导致快速破坏的估计相反,在替位掺杂的情况下,损伤是由氮掺杂原子附近的碳原子位移引发的,导致替位掺杂位点转化为吡啶型。尽管在 80kV 时这种情况相对较少,但在电子能量损失光谱学研究中通常使用的更高电压下,这种情况变得很重要。相应地,我们在 100kV 下测量了能量损失谱时间序列,为氮掺杂单壁碳纳米管中的这种转化提供了直接证据,与我们的理论预测非常吻合。除了提高对这些结构辐照稳定性的理解外,我们还表明,在使用高能电子对其进行表征时,不能忽略结构变化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验