Suppr超能文献

二维应变和缺陷 GaSe 上 CO 的增强敏感性。

Enhanced Sensitivity of CO on Two-Dimensional, Strained, and Defective GaSe.

机构信息

Graduate Institute of Applied Physics, National Taiwan University, Taipei 10617, Taiwan.

Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 32003, Taiwan.

出版信息

Molecules. 2021 Feb 4;26(4):812. doi: 10.3390/molecules26040812.

Abstract

The toxic gas carbon monoxide (CO) is fatal to human beings and it is hard to detect because of its colorless and odorless properties. Fortunately, the high surface-to-volume ratio of the gas makes two-dimensional (2D) materials good candidates for gas sensing. This article investigates CO sensing efficiency with a two-dimensional monolayer of gallium selenide (GaSe) via the vacancy defect and strain effect. According to the computational results, defective GaSe structures with a Se vacancy have a better performance in CO sensing than pristine ones. Moreover, the adsorption energy gradually increases with the scale of tensile strain in defective structures. The largest adsorption energy reached -1.5 eV and the largest charger transfer was about -0.77 e. Additionally, the CO gas molecule was deeply dragged into the GaSe surface. We conclude that the vacancy defect and strain effect transfer GaSe to a relatively unstable state and, therefore, enhance CO sensitivity. The adsorption rate can be controlled by adjusting the strain scale. This significant discovery makes the monolayer form of GaSe a promising candidate in CO sensing. Furthermore, it reveals the possibility of the application of CO adsorption, transportation, and releasement.

摘要

有毒气体一氧化碳(CO)对人类是致命的,而且由于其无色无味的特性,很难被检测到。幸运的是,由于气体的高表面积与体积比,二维(2D)材料成为气体传感的理想候选材料。本文通过空位缺陷和应变效应研究了二维单层硒化镓(GaSe)对 CO 的传感效率。根据计算结果,具有硒空位的缺陷 GaSe 结构在 CO 传感方面比原始结构具有更好的性能。此外,在缺陷结构中,吸附能随拉伸应变的增加而逐渐增加。最大吸附能达到-1.5 eV,最大电荷转移约为-0.77 e。此外,CO 气体分子被深深地拖入 GaSe 表面。我们得出结论,空位缺陷和应变效应使 GaSe 转变为相对不稳定的状态,从而提高了 CO 的灵敏度。可以通过调节应变尺度来控制吸附速率。这一重大发现使 GaSe 的单层形式成为 CO 传感的有前途的候选材料。此外,它揭示了 CO 吸附、传输和释放应用的可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07b3/7915681/6076c5e68dcc/molecules-26-00812-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验