Suppr超能文献

使用维度-类别频谱探索社会发展中心理结构的潜在结构。

Exploring the Latent Structures of Psychological Constructs in Social Development Using the Dimensional-Categorical Spectrum.

作者信息

Masyn Katherine E, Henderson Craig E, Greenbaum Paul E

机构信息

Harvard University.

Sam Houston State University.

出版信息

Soc Dev. 2010 Aug;19(3):470-493. doi: 10.1111/j.1467-9507.2009.00573.x.

Abstract

This paper provides an introduction to a recently developed conceptual framework-the dimensional-categorical spectrum-for utilizing general factor mixture models to explore the latent structures of psychological constructs. This framework offers advantages over traditional latent variable models that usually employ either continuous latent factors or categorical latent class variables to characterize the latent structure and require an a priori assumption about the underlying nature of the construct as either purely dimension or purely categorical. The modeling process is discussed in detail and then illustrated with data on the delinquency items of Achenbach's child behavior checklist from a sample of children in the National Adolescent and Child Treatment Study.

摘要

本文介绍了一种最近开发的概念框架——维度-类别谱,用于利用一般因素混合模型探索心理结构的潜在结构。该框架比传统的潜在变量模型具有优势,传统模型通常使用连续潜在因素或类别潜在类别变量来表征潜在结构,并且需要对结构的潜在性质预先假设为纯粹维度或纯粹类别。详细讨论了建模过程,然后用来自国家青少年和儿童治疗研究样本中阿肯巴克儿童行为检查表中犯罪项目的数据进行了说明。

相似文献

6
Introduction to the special section on mixture modeling in personality assessment.个性评估中混合建模的特刊介绍。
J Pers Assess. 2014;96(3):253-5. doi: 10.1080/00223891.2013.866572. Epub 2013 Dec 30.
10
Fitting latent variable mixture models.拟合潜在变量混合模型。
Behav Res Ther. 2017 Nov;98:91-102. doi: 10.1016/j.brat.2017.04.003. Epub 2017 Apr 17.

引用本文的文献

6
[Not Available].[无可用内容]。
Ann Med Psychol (Paris). 2021 Jan;179(1):95-106. doi: 10.1016/j.amp.2020.11.015. Epub 2021 Jan 8.

本文引用的文献

6
Local solutions in the estimation of growth mixture models.生长混合模型估计中的局部解。
Psychol Methods. 2006 Mar;11(1):36-53. doi: 10.1037/1082-989X.11.1.36.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验