Breitling Rainer, Ritchie Shawn, Goodenowe Dayan, Stewart Mhairi L, Barrett Michael P
Groningen Bioinformatics Centre, University of Groningen, 9751 NN Haren, The Netherlands ; Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, G12 8QQ UK.
Phenomenome Discoveries, Saskatoon, S7N 4L8 Canada.
Metabolomics. 2006;2(3):155-164. doi: 10.1007/s11306-006-0029-z. Epub 2006 Jul 25.
Fourier transform mass spectrometry has recently been introduced into the field of metabolomics as a technique that enables the mass separation of complex mixtures at very high resolution and with ultra high mass accuracy. Here we show that this enhanced mass accuracy can be exploited to predict large metabolic networks , based only on the observed metabolites without recourse to predictions based on the literature. The resulting networks are highly information-rich and clearly non-random. They can be used to infer the chemical identity of metabolites and to obtain a global picture of the structure of cellular metabolic networks. This represents the first reconstruction of metabolic networks based on unbiased metabolomic data and offers a breakthrough in the systems-wide analysis of cellular metabolism.
傅里叶变换质谱最近已被引入代谢组学领域,作为一种能够以非常高的分辨率和超高的质量精度对复杂混合物进行质量分离的技术。在这里,我们表明,这种提高的质量精度可用于预测大型代谢网络,仅基于观察到的代谢物,而无需借助基于文献的预测。由此产生的网络具有高度的信息丰富性且明显非随机。它们可用于推断代谢物的化学身份,并获得细胞代谢网络结构的全局图景。这代表了基于无偏代谢组学数据的代谢网络的首次重建,并为细胞代谢的全系统分析提供了突破。