Suppr超能文献

抗菌药物QPT-1、抗癌药物依托泊苷和莫西沙星对DNA回旋酶抑制作用的结构基础。

Structural basis of DNA gyrase inhibition by antibacterial QPT-1, anticancer drug etoposide and moxifloxacin.

作者信息

Chan Pan F, Srikannathasan Velupillai, Huang Jianzhong, Cui Haifeng, Fosberry Andrew P, Gu Minghua, Hann Michael M, Hibbs Martin, Homes Paul, Ingraham Karen, Pizzollo Jason, Shen Carol, Shillings Anthony J, Spitzfaden Claus E, Tanner Robert, Theobald Andrew J, Stavenger Robert A, Bax Benjamin D, Gwynn Michael N

机构信息

Antibacterial Discovery Performance Unit, Infectious Diseases, Therapy Area Unit, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426-0989, USA.

Platform Technology and Science, GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, UK.

出版信息

Nat Commun. 2015 Dec 7;6:10048. doi: 10.1038/ncomms10048.

Abstract

New antibacterials are needed to tackle antibiotic-resistant bacteria. Type IIA topoisomerases (topo2As), the targets of fluoroquinolones, regulate DNA topology by creating transient double-strand DNA breaks. Here we report the first co-crystal structures of the antibacterial QPT-1 and the anticancer drug etoposide with Staphylococcus aureus DNA gyrase, showing binding at the same sites in the cleaved DNA as the fluoroquinolone moxifloxacin. Unlike moxifloxacin, QPT-1 and etoposide interact with conserved GyrB TOPRIM residues rationalizing why QPT-1 can overcome fluoroquinolone resistance. Our data show etoposide's antibacterial activity is due to DNA gyrase inhibition and suggests other anticancer agents act similarly. Analysis of multiple DNA gyrase co-crystal structures, including asymmetric cleavage complexes, led to a 'pair of swing-doors' hypothesis in which the movement of one DNA segment regulates cleavage and religation of the second DNA duplex. This mechanism can explain QPT-1's bacterial specificity. Structure-based strategies for developing topo2A antibacterials are suggested.

摘要

需要新型抗菌药物来应对抗生素耐药细菌。IIA型拓扑异构酶(topo2As)是氟喹诺酮类药物的作用靶点,通过产生瞬时双链DNA断裂来调节DNA拓扑结构。在此,我们报道了抗菌药物QPT-1和抗癌药物依托泊苷与金黄色葡萄球菌DNA旋转酶的首个共晶体结构,显示它们与氟喹诺酮类药物莫西沙星在切割后的DNA中的相同位点结合。与莫西沙星不同,QPT-1和依托泊苷与保守的GyrB TOPRIM残基相互作用,这解释了QPT-1为何能够克服氟喹诺酮耐药性。我们的数据表明依托泊苷的抗菌活性归因于对DNA旋转酶的抑制作用,并提示其他抗癌药物也有类似作用。对包括不对称切割复合物在内的多个DNA旋转酶共晶体结构的分析,得出了一个“双开门”假说,即一个DNA片段的移动调节第二个DNA双链的切割和重新连接。这一机制可以解释QPT-1的细菌特异性。本文提出了基于结构的开发topo2A抗菌药物的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5bc/4686662/7747510376ae/ncomms10048-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验