Freie Universität Berlin, Institute for Biology-Microbiology, D-14195 Berlin, Germany.
Freie Universität Berlin, Institute for Biology-Microbiology, D-14195 Berlin, Germany; Center for Biotechnology (CeBiTec), Universitätsstraße 25, D-33615 Bielefeld, Germany.
Redox Biol. 2019 Jan;20:514-525. doi: 10.1016/j.redox.2018.11.012. Epub 2018 Nov 17.
Mycothiol (MSH) functions as major low molecular weight (LMW) thiol in the industrially important Corynebacterium glutamicum. In this study, we genomically integrated an Mrx1-roGFP2 biosensor in C. glutamicum to measure dynamic changes of the MSH redox potential (E) during the growth and under oxidative stress. C. glutamicum maintains a highly reducing intrabacterial E throughout the growth curve with basal E levels of ~- 296 mV. Consistent with its HO resistant phenotype, C. glutamicum responds only weakly to 40 mM HO, but is rapidly oxidized by low doses of NaOCl. We further monitored basal E changes and the HO response in various mutants which are compromised in redox-signaling of ROS (OxyR, SigH) and in the antioxidant defense (MSH, Mtr, KatA, Mpx, Tpx). While the probe was constitutively oxidized in the mshC and mtr mutants, a smaller oxidative shift in basal E was observed in the sigH mutant. The catalase KatA was confirmed as major HO detoxification enzyme required for fast biosensor re-equilibration upon return to non-stress conditions. In contrast, the peroxiredoxins Mpx and Tpx had only little impact on E and HO detoxification. Further live imaging experiments using confocal laser scanning microscopy revealed the stable biosensor expression and fluorescence at the single cell level. In conclusion, the stably expressed Mrx1-roGFP2 biosensor was successfully applied to monitor dynamic E changes in C. glutamicum during the growth, under oxidative stress and in different mutants revealing the impact of Mtr and SigH for the basal level E and the role of OxyR and KatA for efficient HO detoxification under oxidative stress.
Mycothiol (MSH) 作为主要的低分子量 (LMW) 硫醇,在工业上重要的谷氨酸棒杆菌中发挥作用。在这项研究中,我们在谷氨酸棒杆菌中基因组整合了 Mrx1-roGFP2 生物传感器,以测量 MSH 氧化还原电势 (E) 在生长过程中和氧化应激下的动态变化。谷氨酸棒杆菌在整个生长曲线中保持高度还原的胞内 E,基础 E 水平约为-296 mV。与它对 HO 的抗性表型一致,谷氨酸棒杆菌对 40 mM HO 的反应较弱,但对低剂量的 NaOCl 迅速氧化。我们进一步监测了各种突变体的基础 E 变化和 HO 反应,这些突变体在 ROS(OxyR、SigH)的氧化还原信号和抗氧化防御(MSH、Mtr、KatA、Mpx、Tpx)中受到损害。虽然探针在 mshC 和 mtr 突变体中被持续氧化,但在 sigH 突变体中观察到基础 E 的氧化偏移较小。过氧化氢酶 KatA 被确认为主要的 HO 解毒酶,是生物传感器在返回非应激条件下快速重新平衡所必需的。相比之下,过氧化物酶 Mpx 和 Tpx 对 E 和 HO 解毒的影响较小。使用共聚焦激光扫描显微镜进行的进一步活细胞成像实验显示了稳定的生物传感器表达和荧光在单细胞水平上。总之,稳定表达的 Mrx1-roGFP2 生物传感器成功地应用于监测谷氨酸棒杆菌在生长过程中、氧化应激下和不同突变体中的动态 E 变化,揭示了 Mtr 和 SigH 对基础 E 水平的影响以及 OxyR 和 KatA 在氧化应激下有效 HO 解毒的作用。