Lee Kiyoun, Boger Dale L
Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States.
J Am Chem Soc. 2014 Feb 26;136(8):3312-7. doi: 10.1021/ja500548e. Epub 2014 Feb 17.
Divergent total syntheses of (-)-kopsifoline D and (-)-deoxoapodine are detailed from a common pentacyclic intermediate 15, enlisting the late-stage formation of two different key strategic bonds (C21-C3 and C21-O-C6) unique to their hexacyclic ring systems that are complementary to its prior use in the total syntheses of kopsinine (C21-C2 bond formation) and (+)-fendleridine (C21-O-C19 bond formation). The combined efforts represent the total syntheses of members of four classes of natural products from a common intermediate functionalized for late-stage formation of four different key strategic bonds uniquely embedded in each natural product core structure. Key to the first reported total synthesis of a kopsifoline that is detailed herein was the development of a transannular enamide alkylation for late-stage formation of the C21-C3 bond with direct introduction of the reactive indolenine C2 oxidation state from a penultimate C21 functionalized Aspidosperma-like pentacyclic intermediate. Central to the assemblage of the underlying Apidosperma skeleton is a powerful intramolecular [4 + 2]/[3 + 2] cycloaddition cascade of a 1,3,4-oxadiazole that provided the functionalized pentacyclic ring system 15 in a single step in which the C3 methyl ester found in the natural products served as a key 1,3,4-oxadiazole substituent, activating it for participation in the initiating Diels-Alder reaction and stabilizing the intermediate 1,3-dipole.
从共同的五环中间体15详细阐述了(-)-柯西福林D和(-)-脱氧阿波定的发散性全合成,利用了其六环系统特有的两个不同关键战略键(C21-C3和C21-O-C6)的后期形成,这与之前在柯西宁全合成(形成C21-C2键)和(+)-芬德里定全合成(形成C21-O-C19键)中对该中间体的使用互补。这些综合努力代表了从一个共同中间体出发,通过后期官能团化以形成独特地嵌入在每个天然产物核心结构中的四个不同关键战略键,从而实现了四类天然产物成员的全合成。本文详细报道的首次柯西福林全合成的关键在于开发了一种跨环烯酰胺烷基化反应,用于后期形成C21-C3键,并从倒数第二个C21官能团化的类阿西多斯佩尔马五环中间体直接引入反应性吲哚啉C2氧化态。构成潜在阿西多斯佩尔马骨架的核心是1,3,4-恶二唑的强大分子内[4 + 2]/[3 + 2]环加成串联反应,该反应在一步中提供了官能团化的五环系统15,其中天然产物中发现的C3甲酯作为关键的1,3,4-恶二唑取代基,激活其参与引发的狄尔斯-阿尔德反应并稳定中间体1,3-偶极子。