University of Cukurova , Faculty of Medicine, Department of Physiology.
Department of Physical Education and Sports College , Adana, Turkey.
J Sports Sci Med. 2005 Dec 1;4(4):489-98. eCollection 2005 Dec.
Wrestling requires strength of the upper and lower body musculature which is critical for the athletic performance. Evaluation of the adolescent's skeletal muscle is important to understand body movement, especially including those involved in sports. Strength, power and endurance capacity are defined as parameters of skeletal muscle biomechanical properties. The isokinetic dynamometer is an important toll for making this type of evaluation. However, load range phase of range of motion has to be considered to interpret the data correctly. With this in mind we aimed to investigate the lover body musculature contractile characteristics of adolescent wrestlers together with detailed analyses of load range phase of motion. Thirteen boys aged 12 - 14 years participated to this study. Concentric load range torque, work and power of knee extension and flexion were measured by a Cybex Norm dynamometer at angular velocities from 450°/sec to 30°/sec with 30°/sec decrements for each set. None of the wrestlers were able to attain load range for angular velocities above 390°/sec and 420°/sec for extension and flexion respectively. Detailed analyses of the load range resulted in statistically significant differences in the normalized load range peak torque for extension at 270°/sec (1.44 ± 0.28 Nm·kg(-1) and 1.14 ± 0.28 Nm·kg(-1) for total and load range peak torque respectively, p < 0.05), and for flexion at 300°/sec (1.26 ± 0.28 Nm·kg(-1) and 1.03 ± 0.23 Nm·kg(-1) for total and load range peak torque respectively, p < 0.05), compared to total peak torque data. Similarly, the significant difference was found for the work values at 90°/sec (1.91 ± 0.23 Nm·kg(-1) and 1.59 ± 0.24 Nm·kg(-1) for total and load range work respectively for extension and 1.73 ± 0.21 Nm·kg(-1) and 1.49 ± 0.19 Nm·kg(-1) for total and load range work respectively for flexion, p < 0.05), and was evident at higher angular velocities (p < 0.001) for both extension and flexion. At extension, load range power values were significantly smaller than total power for all angular velocities except 150°/sec (p < 0.05 for 120 and 180°/sec, p < 0.001 for others). Finally, load range flexion power was found to be higher than total power with statistically significance (p < 0.05 for 60, 120, 150, 180, 210, 270 and 300°/sec, p < 0.001 for 240 °/sec). Extra caution is required for correct interpretation of load range data in terms of considering the load range during limb movement. Evaluation of muscle performance of these adolescent wrestlers at regular intervals may give us an opportunity to obtain a healthy maturation profile of these adolescent wrestlers. Key PointsConsideration of load range for peak torque, work and power calculation resulted significant differences in the data presented by isokinetic dynamometer. Therefore evaluation of the dynamometer data required consideration of the load range for correct analysis and interpretation.Contraction velocity has critical importance in determining the load range attaining ability for a moving limb during load range evaluation. In fact alterations in contraction speed may be due to a number of changes in muscle morphology, subjects' age and the ratio between type I and type II muscle fiber area.
摔跤需要上下体肌肉力量,这对运动员的表现至关重要。评估青少年的骨骼肌对于理解身体运动很重要,特别是包括那些参与运动的肌肉。力量、功率和耐力能力被定义为骨骼肌生物力学特性的参数。等速测力仪是进行这种评估的重要工具。然而,为了正确解释数据,必须考虑运动幅度的负荷范围阶段。考虑到这一点,我们旨在研究青少年摔跤手下肢肌肉的收缩特征,并对运动幅度的负荷范围阶段进行详细分析。13 名 12-14 岁的男孩参加了这项研究。使用 Cybex Norm 测力仪在 450°/秒至 30°/秒的角速度下测量膝关节的向心负荷范围扭矩、功和功率,每一组的角速度降低 30°/秒。没有一个摔跤手能够达到分别为 390°/秒和 420°/秒的角速度的负荷范围。对负荷范围的详细分析导致在伸展时 270°/秒的归一化负荷范围峰值扭矩(1.44±0.28 Nm·kg(-1)和 1.14±0.28 Nm·kg(-1)分别为总峰值扭矩和负荷范围峰值扭矩,p<0.05),以及在弯曲时 300°/秒(1.26±0.28 Nm·kg(-1)和 1.03±0.23 Nm·kg(-1)分别为总峰值扭矩和负荷范围峰值扭矩,p<0.05)时存在统计学差异,与总峰值扭矩数据相比。同样,在伸展时 90°/秒(1.91±0.23 Nm·kg(-1)和 1.59±0.24 Nm·kg(-1)分别为总功和负荷范围功,p<0.05),以及在弯曲时 1.73±0.21 Nm·kg(-1)和 1.49±0.19 Nm·kg(-1)分别为总功和负荷范围功,p<0.05)时发现了显著差异,在较高的角速度(p<0.001)时也存在这种差异,适用于伸展和弯曲两种情况。在伸展时,除了 150°/秒(120°/秒和 180°/秒时 p<0.05,其他角速度时 p<0.001)外,负荷范围功率值明显小于总功率值。最后,发现负荷范围弯曲功率高于总功率,具有统计学意义(60、120、150、180、210、270 和 300°/秒时 p<0.05,240°/秒时 p<0.001)。在考虑肢体运动过程中的负荷范围时,需要格外小心正确解释负荷范围数据。定期评估这些青少年摔跤手的肌肉表现可能会为我们提供这些青少年摔跤手健康成熟的特征。关键点在计算等速测力仪的峰值扭矩、功和功率时,考虑负荷范围会导致数据出现显著差异。因此,为了正确分析和解释测力仪数据,需要考虑负荷范围。在进行负荷范围评估时,确定运动肢体达到负荷范围的能力的收缩速度至关重要。事实上,收缩速度的改变可能是由于肌肉形态的许多变化、受试者的年龄以及 I 型和 II 型肌纤维面积之间的比例变化引起的。