Suppr超能文献

少突胶质细胞分化过程中c-Myc对细胞周期和核小体组蛋白的转录调控

c-Myc-dependent transcriptional regulation of cell cycle and nucleosomal histones during oligodendrocyte differentiation.

作者信息

Magri L, Gacias M, Wu M, Swiss V A, Janssen W G, Casaccia P

机构信息

Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, United States.

Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, United States; Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, United States.

出版信息

Neuroscience. 2014 Sep 12;276:72-86. doi: 10.1016/j.neuroscience.2014.01.051. Epub 2014 Feb 4.

Abstract

Oligodendrocyte progenitor cells (OPCs) have the ability to divide or to growth arrest and differentiate into myelinating oligodendrocytes in the developing brain. Due to their high number and the persistence of their proliferative capacity in the adult brain, OPCs are being studied as potential targets for myelin repair and also as a potential source of brain tumors. This study addresses the molecular mechanisms regulating the transcriptional changes occurring at the critical transition between proliferation and cell cycle exit in cultured OPCs. Using bioinformatic analysis of existing datasets, we identified c-Myc as a key transcriptional regulator of this transition and confirmed direct binding of this transcription factor to identified target genes using chromatin immunoprecipitation. The expression of c-Myc was elevated in proliferating OPCs, where it also bound to the promoter of genes involved in cell cycle regulation (i.e. Cdc2) or chromosome organization (i.e. H2afz). Silencing of c-Myc was associated with decreased histone acetylation at target gene promoters and consequent decrease of gene transcripts. c-Myc silencing also induced a global increase of repressive histone methylation and premature peripheral nuclear chromatin compaction while promoting the progression towards differentiation. We conclude that c-Myc is an important modulator of the transition between proliferation and differentiation of OPCs, although its decrease is not sufficient to induce progression into a myelinating phenotype.

摘要

少突胶质前体细胞(OPCs)具有分裂能力,或停止生长并在发育中的大脑中分化为形成髓鞘的少突胶质细胞。由于其数量众多且在成人大脑中持续具有增殖能力,OPCs正作为髓鞘修复的潜在靶点以及脑肿瘤的潜在来源进行研究。本研究探讨了在培养的OPCs中,调控增殖与细胞周期退出这一关键转变过程中发生的转录变化的分子机制。通过对现有数据集进行生物信息学分析,我们确定c-Myc是这一转变的关键转录调节因子,并使用染色质免疫沉淀法证实了该转录因子与已鉴定的靶基因直接结合。c-Myc在增殖的OPCs中表达升高,它还与参与细胞周期调控(如Cdc2)或染色体组织(如H2afz)的基因启动子结合。c-Myc的沉默与靶基因启动子处组蛋白乙酰化减少以及基因转录本随之减少有关。c-Myc沉默还诱导了抑制性组蛋白甲基化的整体增加和外周核染色质过早压缩,同时促进了向分化的进程。我们得出结论,c-Myc是OPCs增殖与分化转变的重要调节因子,尽管其减少不足以诱导向形成髓鞘表型的转变。

相似文献

1
c-Myc-dependent transcriptional regulation of cell cycle and nucleosomal histones during oligodendrocyte differentiation.
Neuroscience. 2014 Sep 12;276:72-86. doi: 10.1016/j.neuroscience.2014.01.051. Epub 2014 Feb 4.
4
Histone H4 acetylation differentially modulates proliferation in adult oligodendrocyte progenitors.
J Cell Biol. 2024 Nov 4;223(11). doi: 10.1083/jcb.202308064. Epub 2024 Aug 12.
5
Histone modifications affect timing of oligodendrocyte progenitor differentiation in the developing rat brain.
J Cell Biol. 2005 May 23;169(4):577-89. doi: 10.1083/jcb.200412101. Epub 2005 May 16.
6
The transcription factor Yin Yang 1 is essential for oligodendrocyte progenitor differentiation.
Neuron. 2007 Jul 19;55(2):217-30. doi: 10.1016/j.neuron.2007.06.029.
9
Chd7 Collaborates with Sox2 to Regulate Activation of Oligodendrocyte Precursor Cells after Spinal Cord Injury.
J Neurosci. 2017 Oct 25;37(43):10290-10309. doi: 10.1523/JNEUROSCI.1109-17.2017. Epub 2017 Sep 20.

引用本文的文献

1
Histone variant H2AZ1 drives lung cancer progression through the RELA-HIF1A-EGFR signaling pathway.
Cell Commun Signal. 2024 Sep 26;22(1):453. doi: 10.1186/s12964-024-01823-3.
3
Manipulating Myc for reparative regeneration.
Front Cell Dev Biol. 2024 Mar 21;12:1357589. doi: 10.3389/fcell.2024.1357589. eCollection 2024.
4
Oligodendrocyte progenitor cells in Alzheimer's disease: from physiology to pathology.
Transl Neurodegener. 2023 Nov 14;12(1):52. doi: 10.1186/s40035-023-00385-7.
5
The epigenetic landscape of oligodendrocyte lineage cells.
Ann N Y Acad Sci. 2023 Apr;1522(1):24-41. doi: 10.1111/nyas.14959. Epub 2023 Feb 5.
6
Production of human entorhinal stellate cell-like cells by forward programming shows an important role of Foxp1 in reprogramming.
Front Cell Dev Biol. 2022 Aug 15;10:976549. doi: 10.3389/fcell.2022.976549. eCollection 2022.

本文引用的文献

1
Direct conversion of fibroblasts into stably expandable neural stem cells.
Cell Stem Cell. 2012 Apr 6;10(4):473-9. doi: 10.1016/j.stem.2012.03.003. Epub 2012 Mar 22.
2
Neural differentiation of patient specific iPS cells as a novel approach to study the pathophysiology of multiple sclerosis.
Stem Cell Res. 2012 Mar;8(2):259-73. doi: 10.1016/j.scr.2011.12.001. Epub 2011 Dec 13.
3
Glioblastoma models reveal the connection between adult glial progenitors and the proneural phenotype.
PLoS One. 2011;6(5):e20041. doi: 10.1371/journal.pone.0020041. Epub 2011 May 23.
5
Myc, mondo, and metabolism.
Genes Cancer. 2010 Jun;1(6):587-96. doi: 10.1177/1947601910377489.
6
Streamlined embedding of cell monolayers on gridded glass-bottom imaging dishes for correlative light and electron microscopy.
Microsc Microanal. 2010 Dec;16(6):747-54. doi: 10.1017/S1431927610094092. Epub 2010 Oct 20.
8
ChEA: transcription factor regulation inferred from integrating genome-wide ChIP-X experiments.
Bioinformatics. 2010 Oct 1;26(19):2438-44. doi: 10.1093/bioinformatics/btq466. Epub 2010 Aug 13.
9
Epigenetic regulation of oligodendrocyte identity.
Trends Neurosci. 2010 Apr;33(4):193-201. doi: 10.1016/j.tins.2010.01.007. Epub 2010 Mar 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验