Suppr超能文献

扩散张量成像在鉴别胶质母细胞瘤与脑转移瘤中的诊断效用

Diagnostic utility of diffusion tensor imaging in differentiating glioblastomas from brain metastases.

作者信息

Wang S, Kim S J, Poptani H, Woo J H, Mohan S, Jin R, Voluck M R, O'Rourke D M, Wolf R L, Melhem E R, Kim S

机构信息

From the Departments of Radiology (S.W., H.P., J.H.W., S.M., M.R.V., R.L.W.)

Department of Radiology (S.J.K.), University of Ulsan, Asan Medical Center, Seoul, Republic of Korea.

出版信息

AJNR Am J Neuroradiol. 2014 May;35(5):928-34. doi: 10.3174/ajnr.A3871. Epub 2014 Feb 6.

Abstract

BACKGROUND AND PURPOSE

Differentiation of glioblastomas and solitary brain metastases is an important clinical problem because the treatment strategy can differ significantly. The purpose of this study was to investigate the potential added value of DTI metrics in differentiating glioblastomas from brain metastases.

MATERIALS AND METHODS

One hundred twenty-eight patients with glioblastomas and 93 with brain metastases were retrospectively identified. Fractional anisotropy and mean diffusivity values were measured from the enhancing and peritumoral regions of the tumor. Two experienced neuroradiologists independently rated all cases by using conventional MR imaging and DTI. The diagnostic performances of the 2 raters and a DTI-based model were assessed individually and combined.

RESULTS

The fractional anisotropy values from the enhancing region of glioblastomas were significantly higher than those of brain metastases (P < .01). There was no difference in mean diffusivity between the 2 tumor types. A classification model based on fractional anisotropy and mean diffusivity from the enhancing regions differentiated glioblastomas from brain metastases with an area under the receiver operating characteristic curve of 0.86, close to those obtained by 2 neuroradiologists using routine clinical images and DTI parameter maps (area under the curve = 0.90 and 0.85). The areas under the curve of the 2 radiologists were further improved to 0.96 and 0.93 by the addition of the DTI classification model.

CONCLUSIONS

Classification models based on fractional anisotropy and mean diffusivity from the enhancing regions of the tumor can improve diagnostic performance in differentiating glioblastomas from brain metastases.

摘要

背景与目的

胶质母细胞瘤与孤立性脑转移瘤的鉴别是一个重要的临床问题,因为治疗策略可能存在显著差异。本研究的目的是探讨扩散张量成像(DTI)指标在鉴别胶质母细胞瘤与脑转移瘤方面的潜在附加价值。

材料与方法

回顾性纳入128例胶质母细胞瘤患者和93例脑转移瘤患者。测量肿瘤强化区和瘤周区域的分数各向异性值和平均扩散率值。两名经验丰富的神经放射科医生使用传统磁共振成像和DTI对所有病例进行独立评分。分别评估两名评分者以及基于DTI的模型的诊断性能,并将结果合并。

结果

胶质母细胞瘤强化区的分数各向异性值显著高于脑转移瘤(P <.01)。两种肿瘤类型的平均扩散率无差异。基于强化区分数各向异性和平均扩散率的分类模型鉴别胶质母细胞瘤与脑转移瘤的受试者操作特征曲线下面积为0.86,接近两名神经放射科医生使用常规临床图像和DTI参数图所获得的结果(曲线下面积分别为0.90和0.85)。通过加入DTI分类模型,两名放射科医生的曲线下面积进一步提高到0.96和0.93。

结论

基于肿瘤强化区分数各向异性和平均扩散率的分类模型可提高鉴别胶质母细胞瘤与脑转移瘤的诊断性能。

相似文献

引用本文的文献

本文引用的文献

4
Brain metastases: pathobiology and emerging targeted therapies.脑转移瘤:病理生物学与新兴靶向治疗。
Acta Neuropathol. 2012 Feb;123(2):205-22. doi: 10.1007/s00401-011-0933-9. Epub 2012 Jan 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验