Suppr超能文献

基于 MRI 和 18F-FDG-PET 影像组学特征鉴别单发脑转移瘤与胶质母细胞瘤及多模型联合应用。

Differentiating solitary brain metastases from glioblastoma by radiomics features derived from MRI and 18F-FDG-PET and the combined application of multiple models.

机构信息

School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China.

College of Computer & Information Science, Southwest University, Chongqing, China.

出版信息

Sci Rep. 2022 Apr 6;12(1):5722. doi: 10.1038/s41598-022-09803-8.

Abstract

This study aimed to explore the ability of radiomics derived from both MRI and 18F-fluorodeoxyglucose positron emission tomography (18F-FDG-PET) images to differentiate glioblastoma (GBM) from solitary brain metastases (SBM) and to investigate the combined application of multiple models. The imaging data of 100 patients with brain tumours (50 GBMs and 50 SBMs) were retrospectively analysed. Three model sets were built on MRI, 18F-FDG-PET, and MRI combined with 18F-FDG-PET using five feature selection methods and five classification algorithms. The model set with the highest average AUC value was selected, in which some models were selected and divided into Groups A, B, and C. Individual and joint voting predictions were performed in each group for the entire data. The model set based on MRI combined with 18F-FDG-PET had the highest average AUC compared with isolated MRI or 18F-FDG-PET. Joint voting prediction showed better performance than the individual prediction when all models reached an agreement. In conclusion, radiomics derived from MRI and 18F-FDG-PET could help differentiate GBM from SBM preoperatively. The combined application of multiple models can provide greater benefits.

摘要

本研究旨在探索基于 MRI 和 18F-氟脱氧葡萄糖正电子发射断层扫描(18F-FDG-PET)图像的放射组学在鉴别胶质母细胞瘤(GBM)和单发脑转移瘤(SBM)方面的能力,并探讨多种模型的联合应用。回顾性分析了 100 名脑肿瘤患者的影像数据(50 例 GBM 和 50 例 SBM)。使用五种特征选择方法和五种分类算法,在 MRI、18F-FDG-PET 和 MRI 联合 18F-FDG-PET 上分别构建了三个模型集。选择平均 AUC 值最高的模型集,其中一些模型被选入并分为 A、B 和 C 组。对每组的全部数据进行个体和联合投票预测。与单独的 MRI 或 18F-FDG-PET 相比,基于 MRI 联合 18F-FDG-PET 的模型集具有最高的平均 AUC。当所有模型达成一致时,联合投票预测的表现优于个体预测。总之,MRI 和 18F-FDG-PET 衍生的放射组学可帮助术前鉴别 GBM 和 SBM。多模型的联合应用可以带来更大的益处。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8301/8986767/24d7a88a7ab8/41598_2022_9803_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验