Suppr超能文献

开发一种磁性纳米颗粒磁化率幅度成像阵列。

Development of a magnetic nanoparticle susceptibility magnitude imaging array.

机构信息

Thayer School of Engineering at Dartmouth, Hanover, NH, USA.

出版信息

Phys Med Biol. 2014 Feb 21;59(4):1047-71. doi: 10.1088/0031-9155/59/4/1047. Epub 2014 Feb 7.

Abstract

There are several emerging diagnostic and therapeutic applications of magnetic nanoparticles (mNPs) in medicine. This study examines the potential for developing an mNP imager that meets these emerging clinical needs with a low cost imaging solution that uses arrays of digitally controlled drive coils in a multiple-frequency, continuous-wave operating mode and compensated fluxgate magnetometers. The design approach is described and a mathematical model is developed to support measurement and imaging. A prototype is used to demonstrate active compensation of up to 185 times the primary applied magnetic field, depth sensitivity up to 2.5 cm (p < 0.01), and linearity over five dilutions (R(2) > 0.98, p < 0.001). System frequency responses show distinguishable readouts for iron oxide mNPs with single magnetic domain core diameters of 10 and 40 nm, and multi-domain mNPs with a hydrodynamic diameter of 100 nm. Tomographic images show a contrast-to-noise ratio of 23 for 0.5 ml of 12.5 mg Fe ml(-1) mNPs at 1 cm depth. A demonstration involving the injection of mNPs into pork sausage shows the potential for use in biological systems. These results indicate that the proposed mNP imaging approach can potentially be extended to a larger array system with higher-resolution.

摘要

医学领域有几种新兴的磁性纳米粒子(mNP)诊断和治疗应用。本研究旨在开发一种 mNP 成像仪,以满足这些新兴的临床需求,提供一种低成本的成像解决方案,使用数字控制驱动线圈阵列,在多频连续波工作模式下,并采用补偿磁通门磁强计。描述了设计方法,并建立了数学模型以支持测量和成像。使用原型机演示了高达 185 倍主磁场的主动补偿、2.5 厘米(p < 0.01)的深度灵敏度和五个稀释度的线性度(R(2) > 0.98,p < 0.001)。系统频率响应显示了具有 10nm 和 40nm 单磁畴核心直径的氧化铁 mNP 以及具有 100nm 水动力直径的多畴 mNP 的可区分读出。断层扫描图像显示,在 1cm 深度处,0.5ml 浓度为 12.5mgFe/ml(-1) mNP 的对比度噪声比为 23。将 mNP 注入猪肉香肠的演示表明,该方法有望在生物系统中得到应用。这些结果表明,所提出的 mNP 成像方法具有潜在的扩展到大阵列系统和更高分辨率的可能性。

相似文献

1
Development of a magnetic nanoparticle susceptibility magnitude imaging array.
Phys Med Biol. 2014 Feb 21;59(4):1047-71. doi: 10.1088/0031-9155/59/4/1047. Epub 2014 Feb 7.
2
Spectroscopic AC Susceptibility Imaging (sASI) of Magnetic Nanoparticles.
J Magn Magn Mater. 2015 Feb 1;375:164-176. doi: 10.1016/j.jmmm.2014.10.011.
3
Effect of low frequency magnetic fields on the growth of MNP-treated HT29 colon cancer cells.
Nanotechnology. 2018 Apr 27;29(17):175101. doi: 10.1088/1361-6528/aaaea9. Epub 2018 Mar 2.
4
The effect of surface charge of functionalized Fe3O4 nanoparticles on protein adsorption and cell uptake.
Biomaterials. 2014 Aug;35(24):6389-99. doi: 10.1016/j.biomaterials.2014.04.009. Epub 2014 May 9.
5
Rotating Magnetic Nanoparticle Clusters as Microdevices for Drug Delivery.
Int J Nanomedicine. 2020 Jun 11;15:4105-4123. doi: 10.2147/IJN.S247985. eCollection 2020.
6
Extended arrays for nonlinear susceptibility magnitude imaging.
Biomed Tech (Berl). 2015 Oct;60(5):457-63. doi: 10.1515/bmt-2015-0048.
8
A Feasibility Study of Nonlinear Spectroscopic Measurement of Magnetic Nanoparticles Targeted to Cancer Cells.
IEEE Trans Biomed Eng. 2017 May;64(5):972-979. doi: 10.1109/TBME.2016.2584241. Epub 2016 Jun 23.
9
Simultaneous temperature and viscosity estimation capability via magnetic nanoparticle relaxation.
Med Phys. 2022 Apr;49(4):2590-2601. doi: 10.1002/mp.15509. Epub 2022 Feb 18.
10
Optimizing magnetite nanoparticles for mass sensitivity in magnetic particle imaging.
Med Phys. 2011 Mar;38(3):1619-26. doi: 10.1118/1.3554646.

引用本文的文献

1
In vivo Biodistribution and Clearance of Magnetic Iron Oxide Nanoparticles for Medical Applications.
Int J Nanomedicine. 2023 Jul 26;18:4067-4100. doi: 10.2147/IJN.S415063. eCollection 2023.
3
Pharmacokinetics of magnetic iron oxide nanoparticles for medical applications.
J Nanobiotechnology. 2022 Jun 27;20(1):305. doi: 10.1186/s12951-022-01510-w.
4
Adaptive Model for Magnetic Particle Mapping Using Magnetoelectric Sensors.
Sensors (Basel). 2022 Jan 24;22(3):894. doi: 10.3390/s22030894.
6
Recent Progress of Fluxgate Magnetic Sensors: Basic Research and Application.
Sensors (Basel). 2021 Feb 22;21(4):1500. doi: 10.3390/s21041500.
7
Magnetic particle mapping using magnetoelectric sensors as an imaging modality.
Sci Rep. 2019 Feb 14;9(1):2086. doi: 10.1038/s41598-018-38451-0.
8
Extended arrays for nonlinear susceptibility magnitude imaging.
Biomed Tech (Berl). 2015 Oct;60(5):457-63. doi: 10.1515/bmt-2015-0048.
9
Nonlinear Susceptibility Magnitude Imaging of Magnetic Nanoparticles.
J Magn Magn Mater. 2015 Mar 15;378:267-277. doi: 10.1016/j.jmmm.2014.11.049.
10
Spectroscopic AC Susceptibility Imaging (sASI) of Magnetic Nanoparticles.
J Magn Magn Mater. 2015 Feb 1;375:164-176. doi: 10.1016/j.jmmm.2014.10.011.

本文引用的文献

1
Magnetic sentinel lymph node biopsy and localization properties of a magnetic tracer in an in vivo porcine model.
Breast Cancer Res Treat. 2013 Aug;141(1):33-42. doi: 10.1007/s10549-013-2657-0. Epub 2013 Aug 17.
2
Magnetic particle imaging (MPI) for NMR and MRI researchers.
J Magn Reson. 2013 Apr;229:116-26. doi: 10.1016/j.jmr.2012.11.029. Epub 2012 Dec 27.
3
Measuring cerebral hemodynamics with a modified magnetoencephalography system.
Physiol Meas. 2012 Dec;33(12):2079-98. doi: 10.1088/0967-3334/33/12/2079. Epub 2012 Nov 22.
4
X-space MPI: magnetic nanoparticles for safe medical imaging.
Adv Mater. 2012 Jul 24;24(28):3870-7. doi: 10.1002/adma.201200221.
5
Relaxation in x-space magnetic particle imaging.
IEEE Trans Med Imaging. 2012 Dec;31(12):2335-42. doi: 10.1109/TMI.2012.2217979. Epub 2012 Sep 7.
6
Magnetic Relaxometry with an Atomic Magnetometer and SQUID Sensors on Targeted Cancer Cells.
J Magn Magn Mater. 2012 Aug 1;324(17):2613-2619. doi: 10.1016/j.jmmm.2012.03.015.
7
Analysis of a 3-D system function measured for magnetic particle imaging.
IEEE Trans Med Imaging. 2012 Jun;31(6):1289-99. doi: 10.1109/TMI.2012.2188639. Epub 2012 Feb 22.
9
Brownian relaxation of interacting magnetic nanoparticles in a colloid subjected to a pulsatile magnetic field.
J Nanosci Nanotechnol. 2011 May;11(5):4136-41. doi: 10.1166/jnn.2011.4112.
10
Concurrent quantification of multiple nanoparticle bound states.
Med Phys. 2011 Mar;38(3):1136-40. doi: 10.1118/1.3549762.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验