Suppr超能文献

磁共振和磁共振成像研究人员的磁粒子成像(MPI)。

Magnetic particle imaging (MPI) for NMR and MRI researchers.

机构信息

Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720-1762, USA.

出版信息

J Magn Reson. 2013 Apr;229:116-26. doi: 10.1016/j.jmr.2012.11.029. Epub 2012 Dec 27.

Abstract

Magnetic Particle Imaging (MPI) is a new tracer imaging modality that is gaining significant interest from NMR and MRI researchers. While the physics of MPI differ substantially from MRI, it employs hardware and imaging concepts that are familiar to MRI researchers, such as magnetic excitation and detection, pulse sequences, and relaxation effects. Furthermore, MPI employs the same superparamagnetic iron oxide (SPIO) contrast agents that are sometimes used for MR angiography and are often used for MRI cell tracking studies. These SPIOs are much safer for humans than iodine or gadolinium, especially for Chronic Kidney Disease (CKD) patients. The weak kidneys of CKD patients cannot safely excrete iodine or gadolinium, leading to increased morbidity and mortality after iodinated X-ray or CT angiograms, or after gadolinium-MRA studies. Iron oxides, on the other hand, are processed in the liver, and have been shown to be safe even for CKD patients. Unlike the "black blood" contrast generated by SPIOs in MRI due to increased T2* dephasing, SPIOs in MPI generate positive, "bright blood" contrast. With this ideal contrast, even prototype MPI scanners can already achieve fast, high-sensitivity, and high-contrast angiograms with millimeter-scale resolutions in phantoms and in animals. Moreover, MPI shows great potential for an exciting array of applications, including stem cell tracking in vivo, first-pass contrast studies to diagnose or stage cancer, and inflammation imaging in vivo. So far, only a handful of prototype small-animal MPI scanners have been constructed worldwide. Hence, MPI is open to great advances, especially in hardware, pulse sequence, and nanoparticle improvements, with the potential to revolutionize the biomedical imaging field.

摘要

磁共振粒子成像(MPI)是一种新的示踪成像方式,引起了 NMR 和 MRI 研究人员的极大兴趣。虽然 MPI 的物理原理与 MRI 有很大的不同,但它采用了 MRI 研究人员熟悉的硬件和成像概念,如磁激发和检测、脉冲序列和弛豫效应。此外,MPI 采用了与磁共振血管造影术有时使用的相同的超顺磁氧化铁(SPIO)造影剂,并且常用于 MRI 细胞跟踪研究。这些 SPIO 对人体的安全性远高于碘或钆,特别是对于慢性肾脏病(CKD)患者。CKD 患者的肾脏较弱,无法安全排出碘或钆,导致在进行碘造影剂 X 射线或 CT 血管造影或钆增强磁共振血管造影(MRA)研究后,发病率和死亡率增加。另一方面,氧化铁在肝脏中被处理,即使对 CKD 患者也是安全的。与 MRI 中由于 T2* 去相位增加而产生的“黑血”对比不同,MPI 中的 SPIO 产生正的“亮血”对比。有了这种理想的对比,即使是原型 MPI 扫描仪也可以在体模和动物中实现快速、高灵敏度和高对比度的血管造影,分辨率达到毫米级。此外,MPI 显示出在许多令人兴奋的应用方面的巨大潜力,包括体内干细胞跟踪、用于诊断或分期癌症的首过对比研究以及体内炎症成像。到目前为止,全世界仅构建了少数原型小动物 MPI 扫描仪。因此,MPI 有很大的发展空间,特别是在硬件、脉冲序列和纳米颗粒改进方面,有可能彻底改变生物医学成像领域。

相似文献

1
Magnetic particle imaging (MPI) for NMR and MRI researchers.
J Magn Reson. 2013 Apr;229:116-26. doi: 10.1016/j.jmr.2012.11.029. Epub 2012 Dec 27.
2
X-space MPI: magnetic nanoparticles for safe medical imaging.
Adv Mater. 2012 Jul 24;24(28):3870-7. doi: 10.1002/adma.201200221.
3
Magnetic particle imaging: introduction to imaging and hardware realization.
Z Med Phys. 2012 Dec;22(4):323-34. doi: 10.1016/j.zemedi.2012.07.004. Epub 2012 Aug 19.
4
Magnetic particle imaging for radiation-free, sensitive and high-contrast vascular imaging and cell tracking.
Curr Opin Chem Biol. 2018 Aug;45:131-138. doi: 10.1016/j.cbpa.2018.04.014. Epub 2018 May 10.
5
Janus Iron Oxides @ Semiconducting Polymer Nanoparticle Tracer for Cell Tracking by Magnetic Particle Imaging.
Nano Lett. 2018 Jan 10;18(1):182-189. doi: 10.1021/acs.nanolett.7b03829. Epub 2017 Dec 15.
6
Superparamagnetic iron oxides as MPI tracers: A primer and review of early applications.
Adv Drug Deliv Rev. 2019 Jan 1;138:293-301. doi: 10.1016/j.addr.2018.12.007. Epub 2018 Dec 13.
8
A Perspective on Cell Tracking with Magnetic Particle Imaging.
Tomography. 2020 Dec;6(4):315-324. doi: 10.18383/j.tom.2020.00043.
10
Combined Preclinical Magnetic Particle Imaging and Magnetic Resonance Imaging: Initial Results in Mice.
Rofo. 2015 May;187(5):347-52. doi: 10.1055/s-0034-1399344. Epub 2015 Apr 21.

引用本文的文献

1
Advances in magnetic particle imaging and perspectives on liver imaging.
ILIVER. 2022 Nov 8;1(4):237-244. doi: 10.1016/j.iliver.2022.10.003. eCollection 2022 Dec.
2
Size and Illumination Matters: Local Magnetic Actuation and Fluorescence Imaging for Microrobotics.
J Indian Inst Sci. 2024;104(3):745-763. doi: 10.1007/s41745-024-00453-5. Epub 2025 Feb 10.
3
Exploring the diagnostic potential: magnetic particle imaging for brain diseases.
Mil Med Res. 2025 Apr 27;12(1):18. doi: 10.1186/s40779-025-00603-5.
5
From morphology to single-cell molecules: high-resolution 3D histology in biomedicine.
Mol Cancer. 2025 Mar 3;24(1):63. doi: 10.1186/s12943-025-02240-x.
6
A Physics-Based Computational Forward Model for Efficient Image Reconstruction in Magnetic Particle Imaging.
IEEE Trans Med Imaging. 2025 May;44(5):2319-2329. doi: 10.1109/TMI.2025.3530316. Epub 2025 May 2.
7
9
Advanced Nanomaterials for Cancer Therapy: Gold, Silver, and Iron Oxide Nanoparticles in Oncological Applications.
Adv Healthc Mater. 2025 Feb;14(4):e2403059. doi: 10.1002/adhm.202403059. Epub 2024 Nov 6.
10
Research on Spatial Localization Method of Magnetic Nanoparticle Samples Based on Second Harmonic Waves.
Micromachines (Basel). 2024 Sep 30;15(10):1218. doi: 10.3390/mi15101218.

本文引用的文献

1
Deaths: final data for 2007.
Natl Vital Stat Rep. 2010 May;58(19):1-19.
2
X-space MPI: magnetic nanoparticles for safe medical imaging.
Adv Mater. 2012 Jul 24;24(28):3870-7. doi: 10.1002/adma.201200221.
3
Relaxation in x-space magnetic particle imaging.
IEEE Trans Med Imaging. 2012 Dec;31(12):2335-42. doi: 10.1109/TMI.2012.2217979. Epub 2012 Sep 7.
5
Projection x-space magnetic particle imaging.
IEEE Trans Med Imaging. 2012 May;31(5):1076-85. doi: 10.1109/TMI.2012.2185247.
6
An x-space magnetic particle imaging scanner.
Rev Sci Instrum. 2012 Mar;83(3):033708. doi: 10.1063/1.3694534.
7
Analysis of a 3-D system function measured for magnetic particle imaging.
IEEE Trans Med Imaging. 2012 Jun;31(6):1289-99. doi: 10.1109/TMI.2012.2188639. Epub 2012 Feb 22.
9
Optimizing magnetite nanoparticles for mass sensitivity in magnetic particle imaging.
Med Phys. 2011 Mar;38(3):1619-26. doi: 10.1118/1.3554646.
10
Multidimensional x-space magnetic particle imaging.
IEEE Trans Med Imaging. 2011 Sep;30(9):1581-90. doi: 10.1109/TMI.2011.2125982. Epub 2011 Mar 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验