Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720-1762, USA.
J Magn Reson. 2013 Apr;229:116-26. doi: 10.1016/j.jmr.2012.11.029. Epub 2012 Dec 27.
Magnetic Particle Imaging (MPI) is a new tracer imaging modality that is gaining significant interest from NMR and MRI researchers. While the physics of MPI differ substantially from MRI, it employs hardware and imaging concepts that are familiar to MRI researchers, such as magnetic excitation and detection, pulse sequences, and relaxation effects. Furthermore, MPI employs the same superparamagnetic iron oxide (SPIO) contrast agents that are sometimes used for MR angiography and are often used for MRI cell tracking studies. These SPIOs are much safer for humans than iodine or gadolinium, especially for Chronic Kidney Disease (CKD) patients. The weak kidneys of CKD patients cannot safely excrete iodine or gadolinium, leading to increased morbidity and mortality after iodinated X-ray or CT angiograms, or after gadolinium-MRA studies. Iron oxides, on the other hand, are processed in the liver, and have been shown to be safe even for CKD patients. Unlike the "black blood" contrast generated by SPIOs in MRI due to increased T2* dephasing, SPIOs in MPI generate positive, "bright blood" contrast. With this ideal contrast, even prototype MPI scanners can already achieve fast, high-sensitivity, and high-contrast angiograms with millimeter-scale resolutions in phantoms and in animals. Moreover, MPI shows great potential for an exciting array of applications, including stem cell tracking in vivo, first-pass contrast studies to diagnose or stage cancer, and inflammation imaging in vivo. So far, only a handful of prototype small-animal MPI scanners have been constructed worldwide. Hence, MPI is open to great advances, especially in hardware, pulse sequence, and nanoparticle improvements, with the potential to revolutionize the biomedical imaging field.
磁共振粒子成像(MPI)是一种新的示踪成像方式,引起了 NMR 和 MRI 研究人员的极大兴趣。虽然 MPI 的物理原理与 MRI 有很大的不同,但它采用了 MRI 研究人员熟悉的硬件和成像概念,如磁激发和检测、脉冲序列和弛豫效应。此外,MPI 采用了与磁共振血管造影术有时使用的相同的超顺磁氧化铁(SPIO)造影剂,并且常用于 MRI 细胞跟踪研究。这些 SPIO 对人体的安全性远高于碘或钆,特别是对于慢性肾脏病(CKD)患者。CKD 患者的肾脏较弱,无法安全排出碘或钆,导致在进行碘造影剂 X 射线或 CT 血管造影或钆增强磁共振血管造影(MRA)研究后,发病率和死亡率增加。另一方面,氧化铁在肝脏中被处理,即使对 CKD 患者也是安全的。与 MRI 中由于 T2* 去相位增加而产生的“黑血”对比不同,MPI 中的 SPIO 产生正的“亮血”对比。有了这种理想的对比,即使是原型 MPI 扫描仪也可以在体模和动物中实现快速、高灵敏度和高对比度的血管造影,分辨率达到毫米级。此外,MPI 显示出在许多令人兴奋的应用方面的巨大潜力,包括体内干细胞跟踪、用于诊断或分期癌症的首过对比研究以及体内炎症成像。到目前为止,全世界仅构建了少数原型小动物 MPI 扫描仪。因此,MPI 有很大的发展空间,特别是在硬件、脉冲序列和纳米颗粒改进方面,有可能彻底改变生物医学成像领域。
J Magn Reson. 2012-12-27
Adv Mater. 2012-7-24
Z Med Phys. 2012-8-19
Curr Opin Chem Biol. 2018-5-10
Adv Drug Deliv Rev. 2018-12-13
Tomography. 2020-12
Biomed Tech (Berl). 2013-12
Mil Med Res. 2025-4-27
IEEE Trans Med Imaging. 2025-5
Sensors (Basel). 2025-1-23
Micromachines (Basel). 2024-9-30
Natl Vital Stat Rep. 2010-5
Adv Mater. 2012-7-24
IEEE Trans Med Imaging. 2012-9-7
IEEE Trans Med Imaging. 2012-5
Rev Sci Instrum. 2012-3
IEEE Trans Med Imaging. 2012-2-22
IEEE Trans Med Imaging. 2011-3-10