Suppr超能文献

具有时间序列依赖性的统计学习:在小鼠睡眠评分中的应用

Statistical Learning with Time Series Dependence: An Application to Scoring Sleep in Mice.

作者信息

McShane Blakeley B, Jensen Shane T, Pack Allan I, Wyner Abraham J

机构信息

Kellogg School of Management, Northwestern University.

The Wharton School, University of Pennsylvania.

出版信息

J Am Stat Assoc. 2013 Jan 1;108(504):1147-1162. doi: 10.1080/01621459.2013.779838.

Abstract

We develop methodology which combines statistical learning methods with generalized Markov models, thereby enhancing the former to account for time series dependence. Our methodology can accommodate very general and very long-term time dependence structures in an easily estimable and computationally tractable fashion. We apply our methodology to the scoring of sleep behavior in mice. As currently used methods are expensive, invasive, and labor intensive, there is considerable interest in high-throughput automated systems which would allow many mice to be scored cheaply and quickly. Previous efforts have been able to differentiate sleep from wakefulness, but they are unable to differentiate the rare and important state of REM sleep from non-REM sleep. Key difficulties in detecting REM are that (i) REM is much rarer than non-REM and wakefulness, (ii) REM looks similar to non-REM in terms of the observed covariates, (iii) the data are noisy, and (iv) the data contain strong time dependence structures crucial for differentiating REM from non-REM. Our new approach (i) shows improved differentiation of REM from non-REM sleep and (ii) accurately estimates aggregate quantities of sleep in our application to video-based sleep scoring of mice.

摘要

我们开发了一种将统计学习方法与广义马尔可夫模型相结合的方法,从而增强前者以考虑时间序列依赖性。我们的方法能够以易于估计且计算上易于处理的方式适应非常一般且非常长期的时间依赖结构。我们将我们的方法应用于小鼠睡眠行为的评分。由于目前使用的方法昂贵、具有侵入性且劳动强度大,因此对高通量自动化系统有相当大的兴趣,这种系统能够以低成本和快速的方式对许多小鼠进行评分。先前的努力能够区分睡眠和清醒状态,但它们无法区分快速眼动睡眠(REM)这一罕见且重要的状态与非快速眼动睡眠。检测快速眼动睡眠的关键困难在于:(i)快速眼动睡眠比非快速眼动睡眠和清醒状态罕见得多;(ii)就观察到的协变量而言,快速眼动睡眠看起来与非快速眼动睡眠相似;(iii)数据存在噪声;(iv)数据包含对于区分快速眼动睡眠和非快速眼动睡眠至关重要的强时间依赖结构。我们的新方法(i)在区分快速眼动睡眠和非快速眼动睡眠方面表现出改进,并且(ii)在我们对基于视频的小鼠睡眠评分应用中准确估计了睡眠总量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24a0/3913289/974187296469/nihms469657f1.jpg

相似文献

本文引用的文献

1
Role of Homer proteins in the maintenance of sleep-wake states. Homer 蛋白在睡眠-觉醒状态维持中的作用。
PLoS One. 2012;7(4):e35174. doi: 10.1371/journal.pone.0035174. Epub 2012 Apr 20.
5
Genetics of sleep and sleep disorders.睡眠与睡眠障碍的遗传学
Cell. 2011 Jul 22;146(2):194-207. doi: 10.1016/j.cell.2011.07.004.
9
Characterization of the bout durations of sleep and wakefulness.睡眠和觉醒时相的时段特征。
J Neurosci Methods. 2010 Nov 30;193(2):321-33. doi: 10.1016/j.jneumeth.2010.08.024. Epub 2010 Sep 15.
10
Age-related changes in sleep in inbred mice are genotype dependent.遗传性小鼠的睡眠随年龄的变化与基因型有关。
Neurobiol Aging. 2012 Jan;33(1):195.e13-26. doi: 10.1016/j.neurobiolaging.2010.05.010. Epub 2010 Jul 9.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验