Suppr超能文献

基于分子力学或半经验模拟的 QM/MM 自由能微扰的收敛性。

Convergence of QM/MM free-energy perturbations based on molecular-mechanics or semiempirical simulations.

机构信息

Department of Theoretical Chemistry, Lund University, Chemical Centre, P. O. Box 124, SE-221 00 Lund, Sweden.

出版信息

Phys Chem Chem Phys. 2012 Sep 28;14(36):12592-604. doi: 10.1039/c2cp41005b. Epub 2012 Jul 13.

Abstract

Lately, there has been great interest in performing free-energy perturbation (FEP) at the combined quantum mechanics and molecular mechanics (QM/MM) level, e.g. for enzyme reactions. Such calculations require extensive sampling of phase space, which typically is prohibitive with density-functional theory or ab initio methods. Therefore, such calculations have mostly been performed with semiempirical QM (SQM) methods, or by using a thermodynamic cycle involving sampling at the MM level and perturbations between the MM and QM/MM levels of theory. However, the latter perturbations typically have convergence problems, unless the QM system is kept fixed during the simulations, because the MM and QM/MM descriptions of the internal degrees of freedom inside the QM system are too dissimilar. We have studied whether the convergence of the MM → QM/MM perturbation can be improved by using a thoroughly parameterised force field or by using SQM/MM methods. As a test case we use the first half-reaction of haloalkane dehalogenase and the QM calculations are performed with the PBE, B3LYP, and TPSSH density-functional methods. We show that the convergence can be improved with a tailored force field, but only locally around the parameterised state. Simulations based on SQM/MM methods using the MNDO, AM1, PM3, RM1, PDDG-MNDO, and PDDG-PM3 Hamiltonians have slightly better convergence properties, but very long simulations are still needed (~10 ns) and convergence is obtained only if electrostatic interactions between the QM system and the surroundings are ignored. This casts some doubts on the common practice to base QM/MM FEPs on semiempirical simulations without any reweighting of the trajectories.

摘要

最近,人们对在量子力学和分子力学(QM/MM)组合水平上进行自由能微扰(FEP)产生了浓厚的兴趣,例如用于酶反应。此类计算需要广泛的相空间采样,这在密度泛函理论或从头算方法中通常是不可行的。因此,此类计算主要使用半经验 QM(SQM)方法进行,或者使用涉及在 MM 水平上采样和在 MM 和 QM/MM 理论水平之间进行微扰的热力学循环进行。然而,除非在模拟过程中保持 QM 系统固定,否则后者的微扰通常会出现收敛问题,因为 MM 和 QM/MM 对 QM 系统内部自由度的描述差异太大。我们研究了通过使用彻底参数化的力场或通过使用 SQM/MM 方法是否可以提高 MM→QM/MM 微扰的收敛性。作为测试案例,我们使用卤代烷脱卤酶的前半反应,并用 PBE、B3LYP 和 TPSSH 密度泛函方法进行 QM 计算。我们表明,通过使用定制力场可以改善收敛性,但仅在参数化状态的局部附近。基于使用 MNDO、AM1、PM3、RM1、PDDG-MNDO 和 PDDG-PM3 哈密顿量的 SQM/MM 方法的模拟具有稍微更好的收敛特性,但仍需要非常长的模拟(~10 ns),并且只有忽略 QM 系统与周围环境之间的静电相互作用时才能获得收敛。这对在没有任何轨迹重新加权的情况下基于半经验模拟进行 QM/MM FEP 的常见做法提出了一些质疑。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验