Suppr超能文献

采用迭代非局部统计融合实现脊髓的稳健灰质/白质分割。

Robust GM/WM segmentation of the spinal cord with iterative non-local statistical fusion.

作者信息

Asman Andrew J, Smith Seth A, Reich Daniel S, Landman Bennett A

机构信息

Electrical Engineering, Vanderbilt University, Nashville, TN 37235, USA .

Institute of Imaging Science, Vanderbilt University, Nashville, TN 37235, USA.

出版信息

Med Image Comput Comput Assist Interv. 2013;16(Pt 1):759-67. doi: 10.1007/978-3-642-40811-3_95.

Abstract

New magnetic resonance imaging (MRI) sequences are enabling clinical study of the in vivo spinal cord's internal structure. Yet, low contrast-to-noise ratio, artifacts, and imaging distortions have limited the applicability of tissue segmentation techniques pioneered elsewhere in the central nervous system. Recently, methods have been presented for cord/non-cord segmentation on MRI and the feasibility of gray matter/white matter tissue segmentation has been evaluated. To date, no automated algorithms have been presented. Herein, we present a non-local multi-atlas framework that robustly identifies the spinal cord and segments its internal structure with submillimetric accuracy. The proposed algorithm couples non-local fusion with a large number of slice-based atlases (as opposed to typical volumetric ones). To improve performance, the fusion process is interwoven with registration so that segmentation information guides registration and vice versa. We demonstrate statistically significant improvement over state-of-the-art benchmarks in a study of 67 patients. The primary contributions of this work are (1) innovation in non-volumetric atlas information, (2) advancement of label fusion theory to include iterative registration/segmentation, and (3) the first fully automated segmentation algorithm for spinal cord internal structure on MRI.

摘要

新的磁共振成像(MRI)序列使得对活体脊髓内部结构进行临床研究成为可能。然而,低对比度噪声比、伪影和成像畸变限制了在中枢神经系统其他部位开创的组织分割技术的适用性。最近,已经提出了用于MRI上脊髓/非脊髓分割的方法,并且评估了灰质/白质组织分割的可行性。迄今为止,尚未提出自动算法。在此,我们提出了一个非局部多图谱框架,该框架能够稳健地识别脊髓并以亚毫米精度分割其内部结构。所提出的算法将非局部融合与大量基于切片的图谱(与典型的体积图谱相对)相结合。为了提高性能,融合过程与配准相互交织,使得分割信息指导配准,反之亦然。在对67名患者的研究中,我们证明了相对于现有基准有统计学上的显著改进。这项工作的主要贡献在于:(1)非体积图谱信息方面的创新;(2)将标签融合理论推进到包括迭代配准/分割;(3)首个用于MRI上脊髓内部结构的全自动分割算法。

相似文献

1
Robust GM/WM segmentation of the spinal cord with iterative non-local statistical fusion.
Med Image Comput Comput Assist Interv. 2013;16(Pt 1):759-67. doi: 10.1007/978-3-642-40811-3_95.
2
Groupwise multi-atlas segmentation of the spinal cord's internal structure.
Med Image Anal. 2014 Apr;18(3):460-71. doi: 10.1016/j.media.2014.01.003. Epub 2014 Feb 5.
3
Improved in vivo diffusion tensor imaging of human cervical spinal cord.
Neuroimage. 2013 Feb 15;67:64-76. doi: 10.1016/j.neuroimage.2012.11.014. Epub 2012 Nov 21.
4
Out-of-atlas likelihood estimation using multi-atlas segmentation.
Med Phys. 2013 Apr;40(4):043702. doi: 10.1118/1.4794478.
5
Non-local statistical label fusion for multi-atlas segmentation.
Med Image Anal. 2013 Feb;17(2):194-208. doi: 10.1016/j.media.2012.10.002. Epub 2012 Nov 29.
6
A unified framework for cross-modality multi-atlas segmentation of brain MRI.
Med Image Anal. 2013 Dec;17(8):1181-91. doi: 10.1016/j.media.2013.08.001. Epub 2013 Aug 19.
7
Segmentation of the human spinal cord.
MAGMA. 2016 Apr;29(2):125-53. doi: 10.1007/s10334-015-0507-2. Epub 2016 Jan 2.
8
A supervised framework for the registration and segmentation of white matter fiber tracts.
IEEE Trans Med Imaging. 2011 Jan;30(1):131-45. doi: 10.1109/TMI.2010.2067222. Epub 2010 Aug 16.
9
Unbiased groupwise registration of white matter tractography.
Med Image Comput Comput Assist Interv. 2012;15(Pt 3):123-30. doi: 10.1007/978-3-642-33454-2_16.

引用本文的文献

1
Fully Automatic Method for Reliable Spinal Cord Compartment Segmentation in Multiple Sclerosis.
AJNR Am J Neuroradiol. 2023 Feb;44(2):218-227. doi: 10.3174/ajnr.A7756. Epub 2023 Jan 26.
2
Automatic Spinal Cord Gray Matter Quantification: A Novel Approach.
AJNR Am J Neuroradiol. 2019 Sep;40(9):1592-1600. doi: 10.3174/ajnr.A6157. Epub 2019 Aug 22.
3
Subject-specific regional measures of water diffusion are associated with impairment in chronic spinal cord injury.
Neuroradiology. 2017 Aug;59(8):747-758. doi: 10.1007/s00234-017-1860-9. Epub 2017 Jun 8.
4
Fully automated grey and white matter spinal cord segmentation.
Sci Rep. 2016 Oct 27;6:36151. doi: 10.1038/srep36151.
6
Hierarchical performance estimation in the statistical label fusion framework.
Med Image Anal. 2014 Oct;18(7):1070-81. doi: 10.1016/j.media.2014.06.005. Epub 2014 Jul 4.
7
Self-assessed performance improves statistical fusion of image labels.
Med Phys. 2014 Mar;41(3):031903. doi: 10.1118/1.4864236.
8
Groupwise multi-atlas segmentation of the spinal cord's internal structure.
Med Image Anal. 2014 Apr;18(3):460-71. doi: 10.1016/j.media.2014.01.003. Epub 2014 Feb 5.

本文引用的文献

1
TOPOLOGY PRESERVING AUTOMATIC SEGMENTATION OF THE SPINAL CORD IN MAGNETIC RESONANCE IMAGES.
Proc IEEE Int Symp Biomed Imaging. 2011 Mar-Apr;2011:1737-1740. doi: 10.1109/ISBI.2011.5872741.
2
Non-local STAPLE: an intensity-driven multi-atlas rater model.
Med Image Comput Comput Assist Interv. 2012;15(Pt 3):426-34. doi: 10.1007/978-3-642-33454-2_53.
3
Automated diffeomorphic registration of anatomical structures with rigid parts: application to dynamic cervical MRI.
Med Image Comput Comput Assist Interv. 2012;15(Pt 2):163-70. doi: 10.1007/978-3-642-33418-4_21.
5
Multi-Atlas Segmentation with Joint Label Fusion.
IEEE Trans Pattern Anal Mach Intell. 2013 Mar;35(3):611-23. doi: 10.1109/TPAMI.2012.143. Epub 2012 Jun 26.
6
Iterative multi-atlas-based multi-image segmentation with tree-based registration.
Neuroimage. 2012 Jan 2;59(1):422-30. doi: 10.1016/j.neuroimage.2011.07.036. Epub 2011 Jul 23.
7
Patch-based segmentation using expert priors: application to hippocampus and ventricle segmentation.
Neuroimage. 2011 Jan 15;54(2):940-54. doi: 10.1016/j.neuroimage.2010.09.018. Epub 2010 Sep 17.
8
AQP4 antibodies in neuromyelitis optica: diagnostic and pathogenetic relevance.
Nat Rev Neurol. 2010 Jul;6(7):383-92. doi: 10.1038/nrneurol.2010.72.
9
A generative model for image segmentation based on label fusion.
IEEE Trans Med Imaging. 2010 Oct;29(10):1714-29. doi: 10.1109/TMI.2010.2050897. Epub 2010 Jun 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验