Asman Andrew J, Smith Seth A, Reich Daniel S, Landman Bennett A
Electrical Engineering, Vanderbilt University, Nashville, TN 37235, USA .
Institute of Imaging Science, Vanderbilt University, Nashville, TN 37235, USA.
Med Image Comput Comput Assist Interv. 2013;16(Pt 1):759-67. doi: 10.1007/978-3-642-40811-3_95.
New magnetic resonance imaging (MRI) sequences are enabling clinical study of the in vivo spinal cord's internal structure. Yet, low contrast-to-noise ratio, artifacts, and imaging distortions have limited the applicability of tissue segmentation techniques pioneered elsewhere in the central nervous system. Recently, methods have been presented for cord/non-cord segmentation on MRI and the feasibility of gray matter/white matter tissue segmentation has been evaluated. To date, no automated algorithms have been presented. Herein, we present a non-local multi-atlas framework that robustly identifies the spinal cord and segments its internal structure with submillimetric accuracy. The proposed algorithm couples non-local fusion with a large number of slice-based atlases (as opposed to typical volumetric ones). To improve performance, the fusion process is interwoven with registration so that segmentation information guides registration and vice versa. We demonstrate statistically significant improvement over state-of-the-art benchmarks in a study of 67 patients. The primary contributions of this work are (1) innovation in non-volumetric atlas information, (2) advancement of label fusion theory to include iterative registration/segmentation, and (3) the first fully automated segmentation algorithm for spinal cord internal structure on MRI.
新的磁共振成像(MRI)序列使得对活体脊髓内部结构进行临床研究成为可能。然而,低对比度噪声比、伪影和成像畸变限制了在中枢神经系统其他部位开创的组织分割技术的适用性。最近,已经提出了用于MRI上脊髓/非脊髓分割的方法,并且评估了灰质/白质组织分割的可行性。迄今为止,尚未提出自动算法。在此,我们提出了一个非局部多图谱框架,该框架能够稳健地识别脊髓并以亚毫米精度分割其内部结构。所提出的算法将非局部融合与大量基于切片的图谱(与典型的体积图谱相对)相结合。为了提高性能,融合过程与配准相互交织,使得分割信息指导配准,反之亦然。在对67名患者的研究中,我们证明了相对于现有基准有统计学上的显著改进。这项工作的主要贡献在于:(1)非体积图谱信息方面的创新;(2)将标签融合理论推进到包括迭代配准/分割;(3)首个用于MRI上脊髓内部结构的全自动分割算法。