Suppr超能文献

非局部STAPLE:一种强度驱动的多图谱评分模型。

Non-local STAPLE: an intensity-driven multi-atlas rater model.

作者信息

Asman Andrew J, Landman Bennett A

机构信息

Electrical Engineering, Vanderbilt University, Nashville, TN 37235, USA.

出版信息

Med Image Comput Comput Assist Interv. 2012;15(Pt 3):426-34. doi: 10.1007/978-3-642-33454-2_53.

Abstract

Multi-atlas segmentation provides a general purpose, fully automated class of techniques for transferring spatial information from an existing dataset ("atlases") to a previously unseen context ("target") through image registration. The method used to combine information after registration ("label fusion") has a substantial impact on the overall accuracy and robustness. In practice, weighted voting techniques have dramatically outperformed algorithms based on statistical fusion (i.e., algorithms that incorporate rater performance into the estimation process--STAPLE). We posit that a critical limitation of statistical techniques (as generally proposed) is that they fail to incorporate intensity seamlessly into the estimation process and models of observation error. Herein, we propose a novel statistical fusion algorithm, non-local STAPLE, which merges the STAPLE framework with a non-local means perspective. Non-local STAPLE (1) seamlessly integrates intensity into the estimation process, (2) provides a theoretically consistent model of multi-atlas observation error, and (3) largely bypasses the need for group-wise unbiased registrations. We demonstrate significant improvements in two empirical multi-atlas experiments.

摘要

多图谱分割提供了一类通用的、完全自动化的技术,用于通过图像配准将空间信息从现有数据集(“图谱”)传递到之前未见过的情境(“目标”)。配准后用于组合信息的方法(“标签融合”)对整体准确性和鲁棒性有重大影响。在实践中,加权投票技术的表现显著优于基于统计融合的算法(即,将评分者表现纳入估计过程的算法——STAPLE)。我们认为,统计技术(如通常所提出的)的一个关键局限性在于它们未能将强度无缝纳入估计过程和观测误差模型。在此,我们提出一种新颖的统计融合算法——非局部STAPLE,它将STAPLE框架与非局部均值视角相结合。非局部STAPLE(1)将强度无缝整合到估计过程中,(2)提供了一个理论上一致的多图谱观测误差模型,并且(3)在很大程度上无需进行组间无偏配准。我们在两个实证多图谱实验中展示了显著的改进。

相似文献

1
Non-local STAPLE: an intensity-driven multi-atlas rater model.非局部STAPLE:一种强度驱动的多图谱评分模型。
Med Image Comput Comput Assist Interv. 2012;15(Pt 3):426-34. doi: 10.1007/978-3-642-33454-2_53.
2
Non-local statistical label fusion for multi-atlas segmentation.非局部统计标签融合的多图谱分割。
Med Image Anal. 2013 Feb;17(2):194-208. doi: 10.1016/j.media.2012.10.002. Epub 2012 Nov 29.
3
A unified framework for cross-modality multi-atlas segmentation of brain MRI.用于脑 MRI 多模态多图谱分割的统一框架。
Med Image Anal. 2013 Dec;17(8):1181-91. doi: 10.1016/j.media.2013.08.001. Epub 2013 Aug 19.
4
Deformable atlas for multi-structure segmentation.用于多结构分割的可变形图谱
Med Image Comput Comput Assist Interv. 2013;16(Pt 1):743-50. doi: 10.1007/978-3-642-40811-3_93.
8
A probabilistic, non-parametric framework for inter-modality label fusion.一种用于多模态标签融合的概率非参数框架。
Med Image Comput Comput Assist Interv. 2013;16(Pt 3):576-83. doi: 10.1007/978-3-642-40760-4_72.

引用本文的文献

8
Hierarchical performance estimation in the statistical label fusion framework.统计标签融合框架中的分层性能估计
Med Image Anal. 2014 Oct;18(7):1070-81. doi: 10.1016/j.media.2014.06.005. Epub 2014 Jul 4.
9
Shape-Constrained Multi-Atlas Segmentation of Spleen in CT.CT图像中脾脏的形状约束多图谱分割
Proc SPIE Int Soc Opt Eng. 2014 Mar 21;9034:903446. doi: 10.1117/12.2043079.

本文引用的文献

5
A generative model for image segmentation based on label fusion.基于标签融合的图像分割生成模型。
IEEE Trans Med Imaging. 2010 Oct;29(10):1714-29. doi: 10.1109/TMI.2010.2050897. Epub 2010 Jun 17.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验