Electrical Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA.
Med Phys. 2013 Apr;40(4):043702. doi: 10.1118/1.4794478.
Multi-atlas segmentation has been shown to be highly robust and accurate across an extraordinary range of potential applications. However, it is limited to the segmentation of structures that are anatomically consistent across a large population of potential target subjects (i.e., multi-atlas segmentation is limited to "in-atlas" applications). Herein, the authors propose a technique to determine the likelihood that a multi-atlas segmentation estimate is representative of the problem at hand, and, therefore, identify anomalous regions that are not well represented within the atlases.
The authors derive a technique to estimate the out-of-atlas (OOA) likelihood for every voxel in the target image. These estimated likelihoods can be used to determine and localize the probability of an abnormality being present on the target image.
Using a collection of manually labeled whole-brain datasets, the authors demonstrate the efficacy of the proposed framework on two distinct applications. First, the authors demonstrate the ability to accurately and robustly detect malignant gliomas in the human brain-an aggressive class of central nervous system neoplasms. Second, the authors demonstrate how this OOA likelihood estimation process can be used within a quality control context for diffusion tensor imaging datasets to detect large-scale imaging artifacts (e.g., aliasing and image shading).
The proposed OOA likelihood estimation framework shows great promise for robust and rapid identification of brain abnormalities and imaging artifacts using only weak dependencies on anomaly morphometry and appearance. The authors envision that this approach would allow for application-specific algorithms to focus directly on regions of high OOA likelihood, which would (1) reduce the need for human intervention, and (2) reduce the propensity for false positives. Using the dual perspective, this technique would allow for algorithms to focus on regions of normal anatomy to ascertain image quality and adapt to image appearance characteristics.
多图谱分割已被证明在非常广泛的潜在应用中具有高度的稳健性和准确性。然而,它仅限于在很大一部分潜在目标受试者中具有解剖一致性的结构的分割(即,多图谱分割仅限于“在图谱内”应用)。在此,作者提出了一种技术来确定多图谱分割估计值是否代表手头问题的可能性,从而识别在图谱中未很好表示的异常区域。
作者得出了一种技术来估计目标图像中每个体素的离群(OOA)可能性。这些估计的可能性可用于确定和定位目标图像上存在异常的概率。
使用一系列手动标记的全脑数据集,作者在两个不同的应用中展示了所提出框架的功效。首先,作者展示了准确而稳健地检测人脑恶性胶质瘤的能力 - 一种中枢神经系统肿瘤的侵袭性类别。其次,作者展示了如何在扩散张量成像数据集的质量控制上下文中使用这种 OOA 可能性估计过程来检测大规模成像伪影(例如,混叠和图像阴影)。
所提出的 OOA 可能性估计框架显示出使用仅对异常形态和外观的弱依赖性来快速识别脑异常和成像伪影的巨大潜力。作者设想,这种方法将允许特定于应用的算法直接关注 OOA 可能性高的区域,这将(1)减少对人工干预的需求,(2)降低误报的倾向。使用双重观点,该技术将允许算法专注于正常解剖区域,以确定图像质量并适应图像外观特征。