Lee George, Ali Sahirzeeshan, Veltri Robert, Epstein Jonathan I, Christudass Christhunesa, Madabhushi Anant
Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
Case Western Reserve University, Cleveland, OH, USA.
Med Image Comput Comput Assist Interv. 2013;16(Pt 3):396-403. doi: 10.1007/978-3-642-40760-4_50.
We introduce a novel feature descriptor to describe cancer cells called Cell Orientation Entropy (COrE). The main objective of this work is to employ COrE to quantitatively model disorder of cell/nuclear orientation within local neighborhoods and evaluate whether these measurements of directional disorder are correlated with biochemical recurrence (BCR) in prostate cancer (CaP) patients. COrE has a number of novel attributes that are unique to digital pathology image analysis. Firstly, it is the first rigorous attempt to quantitatively model cell/nuclear orientation. Secondly, it provides for modeling of local cell networks via construction of subgraphs. Thirdly, it allows for quantifying the disorder in local cell orientation via second order statistical features. We evaluated the ability of 39 COrE features to capture the characteristics of cell orientation in CaP tissue microarray (TMA) images in order to predict 10 year BCR in men with CaP following radical prostatectomy. Randomized 3-fold cross-validation via a random forest classifier evaluated on a combination of COrE and other nuclear features achieved an accuracy of 82.7 +/- 3.1% on a dataset of 19 BCR and 20 non-recurrence patients. Our results suggest that COrE features could be extended to characterize disease states in other histological cancer images in addition to prostate cancer.
我们引入了一种名为细胞方向熵(COrE)的新型特征描述符来描述癌细胞。这项工作的主要目标是利用COrE对局部邻域内细胞/细胞核方向的无序性进行定量建模,并评估这些方向无序性的测量值是否与前列腺癌(CaP)患者的生化复发(BCR)相关。COrE具有许多数字病理学图像分析所特有的新属性。首先,它是首次对细胞/细胞核方向进行定量建模的严谨尝试。其次,它通过构建子图来实现对局部细胞网络的建模。第三,它允许通过二阶统计特征对局部细胞方向的无序性进行量化。我们评估了39个COrE特征捕捉CaP组织微阵列(TMA)图像中细胞方向特征的能力,以便预测根治性前列腺切除术后CaP男性患者的10年BCR。通过随机森林分类器在COrE和其他细胞核特征组合上进行的随机3折交叉验证,在一个包含19例BCR患者和20例无复发患者的数据集上达到了82.7 +/- 3.1%的准确率。我们的结果表明,除了前列腺癌外,COrE特征还可扩展用于表征其他组织学癌症图像中的疾病状态。